https://github.com/a-r-j/cpdb
Cython implementation of PDB -> DataFrame parsing
Science Score: 13.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
○CITATION.cff file
-
✓codemeta.json file
Found codemeta.json file -
○.zenodo.json file
-
○DOI references
-
○Academic publication links
-
○Committers with academic emails
-
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (7.4%) to scientific vocabulary
Keywords
Keywords from Contributors
Repository
Cython implementation of PDB -> DataFrame parsing
Basic Info
Statistics
- Stars: 23
- Watchers: 2
- Forks: 0
- Open Issues: 0
- Releases: 0
Topics
Metadata Files
README.md
CPDB
Cython implementation of PDB -> DataFrame parsing
Installation
bash
pip install cpdb-protein
Usage
To Dictionary
```python
To dictionary
from cpdb import parse
From Disk
data = parse("pathtopdb.pdb", df=False) data = parse("pathtopdb.pdb.gz", df=False)
From str
with open("tests/testdata/1htq.pdb") as f: pdbfile = f.readlines() data = parse(pdbstr=pdbfile, df=False)
From PDB
data = parse(pdb_code="3eiy", df=False)
From AF2
data = parse(uniprot_id="Q8W3K0", df=False) ```
{'record_name': array(['ATOM', 'ATOM', 'ATOM', ..., 'HETATM', 'HETATM', 'HETATM'],
dtype=object), 'atom_number': array([ 1, 2, 3, ..., 1773, 1774, 1775], dtype=int32), 'atom_name': array(['N', 'CA', 'C', ..., 'O', 'O', 'O'], dtype=object), 'alt_loc': array(['', '', '', ..., '', '', ''], dtype=object), 'residue_name': array(['GLY', 'GLY', 'GLY', ..., 'HOH', 'HOH', 'HOH'], dtype=object), 'chain_id': array(['A', 'A', 'A', ..., 'A', 'A', 'A'], dtype=object), 'residue_number': array([ 30, 30, 30, ..., 2276, 2277, 2278], dtype=int32), 'insertion': array(['', '', '', ..., '', '', ''], dtype=object), 'x_coord': array([31.203, 32.02 , 33.358, ..., 44.665, 41.786, 38.498], dtype=float32), 'y_coord': array([26.31 , 27.046, 26.387, ..., 13.172, 10.059, 12.491], dtype=float32), 'z_coord': array([ 6.06 , 5.069, 4.79 , ..., 18.445, 22.316, 15.004], dtype=float32), 'occupancy': array([0.5, 0.5, 0.5, ..., 1. , 1. , 1. ], dtype=float32), 'b_factor': array([26.27, 29.29, 30.21, ..., 24.67, 34.64, 41.14], dtype=float32), 'element_symbol': array(['N', 'C', 'C', ..., 'O', 'O', 'O'], dtype=object), 'charge': array(['', '', '', ..., '', '', ''], dtype=object), 'model_idx': array([1, 1, 1, ..., 1, 1, 1], dtype=int32)}
To Pandas DataFrame
```python from cpdb import parse
From Disk
data = parse("pathtopdb.pdb", df=True) data = parse("pathtopdb.pdb.gz", df=True)
From str
with open("tests/testdata/1htq.pdb") as f: pdbfile = f.readlines() data = parse(pdbstr=pdbfile, df=True)
From PDB
data = parse(pdb_code="3eiy", df=True)
From AF2
data = parse(uniprot_id="Q8W3K0", df=True) ```
record_name atom_number atom_name alt_loc residue_name chain_id residue_number insertion x_coord y_coord z_coord occupancy b_factor element_symbol charge model_idx
0 ATOM 1 N GLY A 30 31.202999 26.309999 6.060000 0.50 26.270000 N 1
1 ATOM 2 CA GLY A 30 32.020000 27.046000 5.069000 0.50 29.290001 C 1
2 ATOM 3 C GLY A 30 33.358002 26.386999 4.790000 0.50 30.209999 C 1
3 ATOM 4 O GLY A 30 33.810001 25.535999 5.552000 0.50 29.299999 O 1
4 ATOM 5 N GLY A 31 33.987000 26.789000 3.684000 0.50 31.889999 N 1
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
1769 HETATM 1771 O HOH A 2274 42.688999 61.925999 29.589001 1.00 39.950001 O 1
1770 HETATM 1772 O HOH A 2275 32.055000 62.648998 30.961000 0.66 15.680000 O 1
1771 HETATM 1773 O HOH A 2276 44.665001 13.172000 18.445000 1.00 24.670000 O 1
1772 HETATM 1774 O HOH A 2277 41.785999 10.059000 22.316000 1.00 34.639999 O 1
1773 HETATM 1775 O HOH A 2278 38.498001 12.491000 15.004000 1.00 41.139999 O 1
Owner
- Name: Arian Jamasb
- Login: a-r-j
- Kind: user
- Location: Basel
- Company: University of Cambridge
- Website: jamasb.io
- Twitter: arian_jamasb
- Repositories: 32
- Profile: https://github.com/a-r-j
Principal ML Scientist @PrescientDesign / Tensor Jockey / PhD @ University of Cambridge Prev: MILA, Google X, Relation Therapeutic
GitHub Events
Total
- Watch event: 11
Last Year
- Watch event: 11
Committers
Last synced: about 1 year ago
Top Committers
| Name | Commits | |
|---|---|---|
| Arian Jamasb | a****b@r****m | 9 |
| Arian Jamasb | a****b@g****m | 7 |
Committer Domains (Top 20 + Academic)
Issues and Pull Requests
Last synced: 6 months ago
All Time
- Total issues: 1
- Total pull requests: 4
- Average time to close issues: 4 days
- Average time to close pull requests: 3 minutes
- Total issue authors: 1
- Total pull request authors: 1
- Average comments per issue: 6.0
- Average comments per pull request: 0.0
- Merged pull requests: 4
- Bot issues: 0
- Bot pull requests: 0
Past Year
- Issues: 0
- Pull requests: 0
- Average time to close issues: N/A
- Average time to close pull requests: N/A
- Issue authors: 0
- Pull request authors: 0
- Average comments per issue: 0
- Average comments per pull request: 0
- Merged pull requests: 0
- Bot issues: 0
- Bot pull requests: 0
Top Authors
Issue Authors
- flyfyyfyy (1)
Pull Request Authors
- a-r-j (4)
Top Labels
Issue Labels
Pull Request Labels
Packages
- Total packages: 1
-
Total downloads:
- pypi 1,440 last-month
- Total dependent packages: 0
- Total dependent repositories: 0
- Total versions: 3
- Total maintainers: 1
pypi.org: cpdb-protein
- Homepage: https://github.com/a-r-j/cpdb
- Documentation: https://cpdb-protein.readthedocs.io/
- License: MIT
-
Latest release: 0.2.0
published over 2 years ago