scbean

Single-cell data analysis

https://github.com/jhu99/scbean

Science Score: 77.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
    Found CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
    Found 12 DOI reference(s) in README
  • Academic publication links
    Links to: zenodo.org
  • Committers with academic emails
    2 of 6 committers (33.3%) from academic institutions
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (14.7%) to scientific vocabulary

Keywords

dimensionality-reduction integration single-cell
Last synced: 6 months ago · JSON representation ·

Repository

Single-cell data analysis

Basic Info
Statistics
  • Stars: 15
  • Watchers: 3
  • Forks: 4
  • Open Issues: 1
  • Releases: 6
Topics
dimensionality-reduction integration single-cell
Created about 5 years ago · Last pushed over 1 year ago
Metadata Files
Readme License Citation

README.md

Documentation Status PyPIDOI Downloads GitHub Repo stars

ORCID iD icon https://orcid.org/0000-0002-3351-8020

Scbean integrates a range of models for single-cell data analysis, including dimensionality reduction, remvoing batch effects, and transferring well-annotated cell type labels from scRNA-seq to scATAC-seq and spatial resoved transcriptomics. It is efficient and scalable for large-scale datasets. Scbean will also provide more fundamental analyses for multi-modal data and spatial resoved transcriptomics in the future. The output of our integrated data can be easily used for downstream data analyses such as clustering, identification of cell subpopulations, differential gene expression, visualization using either Seurat or Scanpy.

Four APIs for the analysis of multi-omics data

  • DAVAE supports integration of scRNA-seq, scATAC-seq, spatial transcriptomics based on domain-adversarial and variational approximation.
  • VIPCCA supports integration of unpaired single-cell multi-omics data, differential gene expression analysis based on non-linear canonical correlation analysis.
  • VIMCCA supports joint-analysis of paired multimodal single-cell data based on multi-view latent variable model.
  • VISGP supports the discovery of spatially variable genes exhibiting distinct expression patterns in spatial transcriptome data.

Citation

Haohui Zhang, Yuwei Wang, Bin Lian, Yiran Wang, Xingyi Li, Tao Wang, Xuequn Shang, Hui Yang, Ahmad Aziz, Jialu Hu, Scbean: a python library for single-cell multi-omics data analysis, Bioinformatics, 2024;, btae053, https://doi.org/10.1093/bioinformatics/btae053

Yuwei Wang, Bin Lian, Haohui Zhang, Yuanke Zhong, Jie He, Fashuai Wu, Knut Reinert, Xuequn Shang, Hui Yang, Jialu Hu, A multi-view latent variable model reveals cellular heterogeneity in complex tissues for paired multimodal single-cell data, Bioinformatics, Volume 39, Issue 1, January 2023, btad005, https://doi.org/10.1093/bioinformatics/btad005

Jialu Hu, Mengjie Chen, Xiang Zhou, Effective and scalable single-cell data alignment with non-linear canonical correlation analysis, Nucleic Acids Research, Volume 50, Issue 4, 28 February 2022, Page e21, https://doi.org/10.1093/nar/gkab1147

Jialu Hu, Yuanke Zhong, Xuequn Shang, A versatile and scalable single-cell data integration algorithm based on domain-adversarial and variational approximation, Briefings in Bioinformatics, Volume 23, Issue 1, January 2022, bbab400, https://doi.org/10.1093/bib/bbab400

Jialu Hu, Yiran Wang, Xiang Zhou, and Mengjie Chen. "Pre-processing, Dimension Reduction, and Clustering for Single-Cell RNA-seq Data." In Handbook of Statistical Bioinformatics, pp. 37-51. Springer, Berlin, Heidelberg, 2022. https://doi.org/10.1007/978-3-662-65902-1_2

Installation

  • Create conda environment

shell $ conda create -n scbean python=3.8 $ conda activate scbean

  • Install scbean from pypi

shell $ pip install scbean

  • Alternatively, install the develop version of scbean from GitHub source code

shell $ git clone https://github.com/jhu99/scbean.git $ cd ./scbean/ $ python -m pip install .

Note: Please make sure your python version >= 3.7, and install tensorflow-gpu if GPU is available on your your machine.

Usage of scbean

For a quick start, please follow our guide about the usage of scbean in the Tutorial and Documentation pages.

Owner

  • Name: Jialu Hu
  • Login: jhu99
  • Kind: user

Citation (CITATION.cff)

cff-version: 1.2.0
message: "If you use this software, please cite it as below."
authors:
  - family-names: Hu
    given-names: Jialu
    orcid: https://orcid.org/0000-0002-3351-8020
title: "Scbean: a toolkit for integrating single-cell multimodal data"
version: 0.5.6
identifiers:
  - type: doi
    value: 10.5281/zenodo.10611941
date-released: 2024-02-02

GitHub Events

Total
  • Watch event: 1
Last Year
  • Watch event: 1

Committers

Last synced: 7 months ago

All Time
  • Total Commits: 332
  • Total Committers: 6
  • Avg Commits per committer: 55.333
  • Development Distribution Score (DDS): 0.63
Past Year
  • Commits: 1
  • Committers: 1
  • Avg Commits per committer: 1.0
  • Development Distribution Score (DDS): 0.0
Top Committers
Name Email Commits
Jialu Hu j****u@n****n 123
HaoHuiZhang 9****d 72
drizzlezyk 4****k 72
wangyr997 6****7 47
yuwei-star 7****r 17
jhu j****u@u****u 1
Committer Domains (Top 20 + Academic)

Issues and Pull Requests

Last synced: 7 months ago

All Time
  • Total issues: 2
  • Total pull requests: 4
  • Average time to close issues: 2 months
  • Average time to close pull requests: 2 months
  • Total issue authors: 2
  • Total pull request authors: 3
  • Average comments per issue: 2.0
  • Average comments per pull request: 0.0
  • Merged pull requests: 3
  • Bot issues: 0
  • Bot pull requests: 0
Past Year
  • Issues: 0
  • Pull requests: 0
  • Average time to close issues: N/A
  • Average time to close pull requests: N/A
  • Issue authors: 0
  • Pull request authors: 0
  • Average comments per issue: 0
  • Average comments per pull request: 0
  • Merged pull requests: 0
  • Bot issues: 0
  • Bot pull requests: 0
Top Authors
Issue Authors
  • oldvalley49 (1)
  • liuchunlei0430 (1)
Pull Request Authors
  • wangyr997 (2)
  • jhu99 (1)
  • drizzlezyk (1)
Top Labels
Issue Labels
Pull Request Labels

Packages

  • Total packages: 2
  • Total downloads:
    • pypi 107 last-month
  • Total dependent packages: 0
    (may contain duplicates)
  • Total dependent repositories: 2
    (may contain duplicates)
  • Total versions: 21
  • Total maintainers: 1
proxy.golang.org: github.com/jhu99/scbean
  • Versions: 6
  • Dependent Packages: 0
  • Dependent Repositories: 0
Rankings
Dependent packages count: 5.4%
Average: 5.6%
Dependent repos count: 5.8%
Last synced: 7 months ago
pypi.org: scbean

integration

  • Versions: 15
  • Dependent Packages: 0
  • Dependent Repositories: 2
  • Downloads: 107 Last month
Rankings
Dependent packages count: 10.1%
Dependent repos count: 11.5%
Forks count: 15.4%
Stargazers count: 17.7%
Average: 19.4%
Downloads: 42.4%
Maintainers (1)
Last synced: 7 months ago

Dependencies

docs/source/requirements.txt pypi
  • Babel ==2.9.0
  • Jinja2 ==2.11.2
  • Keras ==2.3.0
  • Keras-Applications ==1.0.8
  • Keras-Preprocessing ==1.1.2
  • Markdown ==3.3.3
  • MarkupSafe ==1.1.1
  • Pillow ==8.1.0
  • PyYAML ==5.3.1
  • Pygments ==2.7.3
  • Sphinx ==3.4.3
  • Werkzeug ==1.0.1
  • absl-py ==0.11.0
  • alabaster ==0.7.12
  • anndata ==0.7.4
  • appnope ==0.1.2
  • astor ==0.8.1
  • astunparse ==1.6.3
  • async-generator ==1.10
  • attrs ==20.3.0
  • backcall ==0.2.0
  • bleach ==3.2.1
  • cachetools ==4.2.0
  • certifi ==2020.12.5
  • chardet ==4.0.0
  • commonmark ==0.9.1
  • cycler ==0.10.0
  • decorator ==4.4.2
  • defusedxml ==0.6.0
  • desc ==2.1.1
  • docutils ==0.16
  • entrypoints ==0.3
  • flatbuffers ==1.12
  • gast ==0.3.3
  • get-version ==2.1
  • google-auth ==1.24.0
  • google-auth-oauthlib ==0.4.2
  • google-pasta ==0.2.0
  • grpcio ==1.32.0
  • h5py ==2.10.0
  • idna ==2.10
  • imagesize ==1.2.0
  • importlib-metadata ==3.3.0
  • ipython ==7.19.0
  • ipython-genutils ==0.2.0
  • jedi ==0.17.2
  • joblib ==1.0.0
  • jsonschema ==3.2.0
  • jupyter-client ==6.1.10
  • jupyter-core ==4.7.0
  • jupyterlab-pygments ==0.1.2
  • kiwisolver ==1.3.1
  • legacy-api-wrap ==1.2
  • llvmlite ==0.35.0
  • louvain ==0.7.0
  • matplotlib ==3.3.3
  • mistune ==0.8.4
  • mock ==4.0.3
  • natsort ==7.1.0
  • nbclient ==0.5.1
  • nbconvert ==6.0.7
  • nbformat ==5.0.8
  • nbsphinx ==0.8.0
  • nest-asyncio ==1.4.3
  • networkx ==2.5
  • numba ==0.52.0
  • numexpr ==2.7.2
  • numpy ==1.19.5
  • oauthlib ==3.1.0
  • opt-einsum ==3.3.0
  • packaging ==20.8
  • pandas ==1.1.0
  • pandocfilters ==1.4.3
  • parso ==0.7.1
  • patsy ==0.5.1
  • pexpect ==4.8.0
  • pickleshare ==0.7.5
  • prompt-toolkit ==3.0.10
  • protobuf ==3.14.0
  • ptyprocess ==0.7.0
  • pyasn1 ==0.4.8
  • pyasn1-modules ==0.2.8
  • pyparsing ==2.4.7
  • pyrsistent ==0.17.3
  • python-dateutil ==2.8.1
  • python-igraph ==0.8.2
  • pytz ==2020.5
  • pyzmq ==20.0.0
  • recommonmark ==0.7.1
  • requests ==2.25.1
  • requests-oauthlib ==1.3.0
  • rsa ==4.6
  • scanpy ==1.6.0
  • scbean ==0.2.6
  • scikit-learn ==0.24.0
  • scipy ==1.4.1
  • seaborn ==0.11.1
  • setuptools-scm ==5.0.1
  • sinfo ==0.3.1
  • six ==1.15.0
  • snowballstemmer ==2.0.0
  • sphinx-rtd-theme ==0.5.1
  • sphinxcontrib-applehelp ==1.0.2
  • sphinxcontrib-devhelp ==1.0.2
  • sphinxcontrib-htmlhelp ==1.0.3
  • sphinxcontrib-jsmath ==1.0.1
  • sphinxcontrib-qthelp ==1.0.3
  • sphinxcontrib-serializinghtml ==1.1.4
  • statsmodels ==0.12.1
  • stdlib-list ==0.8.0
  • tables ==3.6.1
  • tensorboard ==2.4.0
  • tensorboard-plugin-wit ==1.7.0
  • tensorflow ==2.4.0
  • tensorflow-estimator ==2.4.0
  • termcolor ==1.1.0
  • testpath ==0.4.4
  • texttable ==1.6.3
  • threadpoolctl ==2.1.0
  • tornado ==6.1
  • tqdm ==4.55.1
  • traitlets ==5.0.5
  • typing-extensions ==3.7.4.3
  • umap-learn ==0.4.6
  • urllib3 ==1.26.2
  • wcwidth ==0.2.5
  • webencodings ==0.5.1
  • wrapt ==1.12.1
  • zipp ==3.4.0
setup.py pypi
  • anndata *
  • h5py *
  • keras ==2.3.1
  • louvain *
  • pandas *
  • python-igraph *
  • scanpy *
  • scipy *
  • seaborn *
  • tensorflow ==2.4.0
.github/workflows/main.yml actions
  • actions/checkout v2 composite
docs/requirements.txt pypi
  • IPython *
  • nbsphinx *
  • recommonmark *
  • sphinx_rtd_theme *