https://github.com/acai66/yolov5_rotation
rotated bbox detection. inspired by https://github.com/hukaixuan19970627/YOLOv5_DOTA_OBB, thanks hukaixuan19970627.
Science Score: 23.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
○CITATION.cff file
-
✓codemeta.json file
Found codemeta.json file -
○.zenodo.json file
-
○DOI references
-
✓Academic publication links
Links to: zenodo.org -
○Academic email domains
-
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (7.3%) to scientific vocabulary
Keywords
Repository
rotated bbox detection. inspired by https://github.com/hukaixuan19970627/YOLOv5_DOTA_OBB, thanks hukaixuan19970627.
Basic Info
Statistics
- Stars: 90
- Watchers: 3
- Forks: 16
- Open Issues: 19
- Releases: 0
Topics
Metadata Files
README.md
YOLOv5 🚀 is a family of object detection architectures and models pretrained on the COCO dataset, and represents Ultralytics open-source research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours of research and development.
Documentation
See the YOLOv5 Docs for full documentation on training, testing and deployment.
Quick Start Examples
Install
[**Python>=3.6.0**](https://www.python.org/) is required with all [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) installed including [**PyTorch>=1.7**](https://pytorch.org/get-started/locally/): ```bash $ git clone https://github.com/ultralytics/yolov5 $ cd yolov5 $ pip install -r requirements.txt ```Inference
Inference with YOLOv5 and [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36). Models automatically download from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases). ```python import torch # Model model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # or yolov5m, yolov5l, yolov5x, custom # Images img = 'https://ultralytics.com/images/zidane.jpg' # or file, Path, PIL, OpenCV, numpy, list # Inference results = model(img) # Results results.print() # or .show(), .save(), .crop(), .pandas(), etc. ```Inference with detect.py
`detect.py` runs inference on a variety of sources, downloading models automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases) and saving results to `runs/detect`. ```bash $ python detect.py --source 0 # webcam img.jpg # image vid.mp4 # video path/ # directory path/*.jpg # glob 'https://youtu.be/Zgi9g1ksQHc' # YouTube 'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream ```Training
Run commands below to reproduce results on [COCO](https://github.com/ultralytics/yolov5/blob/master/data/scripts/get_coco.sh) dataset (dataset auto-downloads on first use). Training times for YOLOv5s/m/l/x are 2/4/6/8 days on a single V100 (multi-GPU times faster). Use the largest `--batch-size` your GPU allows (batch sizes shown for 16 GB devices). ```bash $ python train.py --data coco.yaml --cfg yolov5s.yaml --weights '' --batch-size 64 yolov5m 40 yolov5l 24 yolov5x 16 ```
Tutorials
* [Train Custom Data](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data) 🚀 RECOMMENDED * [Tips for Best Training Results](https://github.com/ultralytics/yolov5/wiki/Tips-for-Best-Training-Results) ☘️ RECOMMENDED * [Weights & Biases Logging](https://github.com/ultralytics/yolov5/issues/1289) 🌟 NEW * [Roboflow for Datasets, Labeling, and Active Learning](https://github.com/ultralytics/yolov5/issues/4975) 🌟 NEW * [Multi-GPU Training](https://github.com/ultralytics/yolov5/issues/475) * [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36) ⭐ NEW * [TorchScript, ONNX, CoreML Export](https://github.com/ultralytics/yolov5/issues/251) 🚀 * [Test-Time Augmentation (TTA)](https://github.com/ultralytics/yolov5/issues/303) * [Model Ensembling](https://github.com/ultralytics/yolov5/issues/318) * [Model Pruning/Sparsity](https://github.com/ultralytics/yolov5/issues/304) * [Hyperparameter Evolution](https://github.com/ultralytics/yolov5/issues/607) * [Transfer Learning with Frozen Layers](https://github.com/ultralytics/yolov5/issues/1314) ⭐ NEW * [TensorRT Deployment](https://github.com/wang-xinyu/tensorrtx)Environments
Get started in seconds with our verified environments. Click each icon below for details.
Integrations
|Weights and Biases|Roboflow ⭐ NEW| |:-:|:-:| |Automatically track and visualize all your YOLOv5 training runs in the cloud with Weights & Biases|Label and export your custom datasets directly to YOLOv5 for training with Roboflow |
Why YOLOv5

YOLOv5-P5 640 Figure (click to expand)

Figure Notes (click to expand)
* **COCO AP val** denotes mAP@0.5:0.95 metric measured on the 5000-image [COCO val2017](http://cocodataset.org) dataset over various inference sizes from 256 to 1536. * **GPU Speed** measures average inference time per image on [COCO val2017](http://cocodataset.org) dataset using a [AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) V100 instance at batch-size 32. * **EfficientDet** data from [google/automl](https://github.com/google/automl) at batch size 8. * **Reproduce** by `python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n6.pt yolov5s6.pt yolov5m6.pt yolov5l6.pt yolov5x6.pt`Pretrained Checkpoints
|Model |size
(pixels) |mAPval
0.5:0.95 |mAPval
0.5 |Speed
CPU b1
(ms) |Speed
V100 b1
(ms) |Speed
V100 b32
(ms) |params
(M) |FLOPs
@640 (B)
|--- |--- |--- |--- |--- |--- |--- |--- |---
|YOLOv5n |640 |28.4 |46.0 |45 |6.3|0.6|1.9|4.5
|YOLOv5s |640 |37.2 |56.0 |98 |6.4 |0.9 |7.2 |16.5
|YOLOv5m |640 |45.2 |63.9 |224 |8.2 |1.7 |21.2 |49.0
|YOLOv5l |640 |48.8 |67.2 |430 |10.1 |2.7 |46.5 |109.1
|YOLOv5x |640 |50.7 |68.9 |766 |12.1 |4.8 |86.7 |205.7
| | | | | | | | |
|YOLOv5n6 |1280 |34.0 |50.7 |153 |8.1 |2.1 |3.2 |4.6
|YOLOv5s6 |1280 |44.5 |63.0 |385 |8.2 |3.6 |16.8 |12.6
|YOLOv5m6 |1280 |51.0 |69.0 |887 |11.1 |6.8 |35.7 |50.0
|YOLOv5l6 |1280 |53.6 |71.6 |1784 |15.8 |10.5 |76.8 |111.4
|YOLOv5x6
+ TTA|1280
1536 |54.7
55.4 |72.4
72.3 |3136
- |26.2
- |19.4
- |140.7
- |209.8
-
Table Notes (click to expand)
* All checkpoints are trained to 300 epochs with default settings and hyperparameters. * **mAPval** values are for single-model single-scale on [COCO val2017](http://cocodataset.org) dataset.Reproduce by `python val.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65` * **Speed** averaged over COCO val images using a [AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) instance. NMS times (~1 ms/img) not included.
Reproduce by `python val.py --data coco.yaml --img 640 --conf 0.25 --iou 0.45` * **TTA** [Test Time Augmentation](https://github.com/ultralytics/yolov5/issues/303) includes reflection and scale augmentations.
Reproduce by `python val.py --data coco.yaml --img 1536 --iou 0.7 --augment`
Contribute
We love your input! We want to make contributing to YOLOv5 as easy and transparent as possible. Please see our Contributing Guide to get started, and fill out the YOLOv5 Survey to send us feedback on your experiences. Thank you to all our contributors!
Contact
For YOLOv5 bugs and feature requests please visit GitHub Issues. For business inquiries or professional support requests please visit https://ultralytics.com/contact.
Owner
- Name: acai
- Login: acai66
- Kind: user
- Website: https://hyacm.com
- Repositories: 33
- Profile: https://github.com/acai66
悟已往之不谏,知来者之可追
GitHub Events
Total
- Watch event: 1
Last Year
- Watch event: 1
Issues and Pull Requests
Last synced: 6 months ago
All Time
- Total issues: 60
- Total pull requests: 62
- Average time to close issues: 26 days
- Average time to close pull requests: about 2 months
- Total issue authors: 26
- Total pull request authors: 1
- Average comments per issue: 3.63
- Average comments per pull request: 2.84
- Merged pull requests: 0
- Bot issues: 0
- Bot pull requests: 62
Past Year
- Issues: 0
- Pull requests: 0
- Average time to close issues: N/A
- Average time to close pull requests: N/A
- Issue authors: 0
- Pull request authors: 0
- Average comments per issue: 0
- Average comments per pull request: 0
- Merged pull requests: 0
- Bot issues: 0
- Bot pull requests: 0
Top Authors
Issue Authors
- XUDINGYI312 (6)
- pangguanzhe344 (3)
- Yanhui-He (3)
- acai66 (2)
- root12321 (2)
- phunix9 (2)
- nhathoang0110 (2)
- xiaofang916 (1)
- myGithubSiki (1)
- Marvin-20 (1)
- zhaoguoqing12 (1)
- 1272203655 (1)
- rohanpawar294 (1)
- PLEXATIC (1)
- xiaoma-ux (1)
Pull Request Authors
- dependabot[bot] (32)
Top Labels
Issue Labels
Pull Request Labels
Dependencies
- Pillow >=7.1.2
- PyYAML >=5.3.1
- matplotlib >=3.2.2
- numpy >=1.18.5
- opencv-python >=4.1.2
- pandas >=1.1.4
- requests >=2.23.0
- scipy >=1.4.1
- seaborn >=0.11.0
- tensorboard >=2.4.1
- thop *
- torch >=1.7.0
- torchvision >=0.8.1
- tqdm >=4.41.0
- Flask ==1.0.2
- gunicorn ==19.9.0
- pip ==21.1
- actions/cache v2.1.6 composite
- actions/checkout v2 composite
- actions/setup-python v2 composite
- actions/checkout v2 composite
- github/codeql-action/analyze v1 composite
- github/codeql-action/autobuild v1 composite
- github/codeql-action/init v1 composite
- actions/first-interaction v1 composite
- actions/checkout v2 composite
- cirrus-actions/rebase 1.5 composite
- actions/stale v4 composite
- nvcr.io/nvidia/pytorch 21.10-py3 build
- gcr.io/google-appengine/python latest build
