https://github.com/aclai-lab/soledata.jl

Manage logical datasets!

https://github.com/aclai-lab/soledata.jl

Science Score: 46.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
  • Academic publication links
    Links to: scholar.google
  • Committers with academic emails
    2 of 10 committers (20.0%) from academic institutions
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (11.0%) to scientific vocabulary

Keywords

machine-learning multimodal-data unstructured-data

Keywords from Contributors

logic modal-logic symbolic-learning decision-trees time-series-classification
Last synced: 5 months ago · JSON representation

Repository

Manage logical datasets!

Basic Info
  • Host: GitHub
  • Owner: aclai-lab
  • License: mit
  • Language: Julia
  • Default Branch: main
  • Homepage:
  • Size: 4.31 MB
Statistics
  • Stars: 13
  • Watchers: 4
  • Forks: 2
  • Open Issues: 13
  • Releases: 20
Topics
machine-learning multimodal-data unstructured-data
Created over 4 years ago · Last pushed 6 months ago
Metadata Files
Readme License

README.md

SoleData.jl – Datasets for data-driven symbolic AI

Stable Dev CI Coverage <!-- Binder -->

In a nutshell

Learning logical models (that is, models with logical formulas as antecedents) often requires performing model checking many times. SoleData.jl provides logiset (that is, sets of logical interpretations) structures that are optimized for for checking many formulas. Logisets are the symbolic counterpart to Machine Learning datasets. <!-- Some optimized data structures, useful when learning models from symbolic learning datasets; -->

Examples

Propositional Logic

Symbolic AI treats tabular dataset (e.g., the Iris flower dataset) as a set of propositional interpretations (or propositional logiset), onto which formulas of propositional logic are interpreted. ```julia-repl julia> using SoleData, MLJBase;

julia> X = PropositionalLogiset(MLJBase.load_iris()) PropositionalLogiset (6.16 KBs) ├ # instances: 150 ├ # features: 5 └ Table: ...

julia> φ = parseformula( "sepallength > 5.8 ∧ sepalwidth < 3.0 ∨ target == \"setosa\""; atomparser = a->Atom(parsecondition(SoleData.ScalarCondition, a; featuretype = SoleData.VariableValue)) ) SyntaxBranch: (sepallength > 5.8 ∧ sepal_width < 3.0) ∨ target == setosa

julia> check(φ, X, 10) # Check the formula on a single instance true

julia> satmask = check(φ, X); # Check the formula on the whole dataset

julia> slicedataset(X, satmask) PropositionalLogiset (3.66 KBs) ├ # instances: 79 ├ # features: 5 └ Table: ...

julia> slicedataset(X, (!).(satmask)) PropositionalLogiset (3.38 KBs) ├ # instances: 71 ├ # features: 5 └ Table: ...

```

Modal Logic

Symbolic AI treats non-tabular datasets (e.g., datasets of time-series or images) as sets of interpretations (logisets) of more-than-propositional logics, that can express relational patterns. In the following example, a time-series dataset such as NATOPS is interpreted via a modal logic formalism based on intervals and Allen's (or Interval Algebra) relations. On each time series in NATOPS, we hereby check the following temporal property, encoded via a modal logical formula: "there an interval where V1 is always higher than -0.54, and such that there exists a later interval where either V3 is lower than -0.78, or V5 is higher than -0.84."

```julia-repl julia> Xdf, y = SoleData.loadarffdataset("NATOPS");

julia> X = scalarlogiset(Xdf) SupportedLogiset with 1 support (343.08 MBs) ├ worldtype: SoleLogics.Interval{Int64} ├ featvaltype: Float64 ├ featuretype: SoleData.AbstractUnivariateFeature ├ frametype: SoleLogics.FullDimensionalFrame{1, SoleLogics.Interval{Int64}} ├ # instances: 360 ├ usesfullmemo: true ├[BASE] UniformFullDimensionalLogiset of channel size (51,) (342.91 MBs) │ ├ size × eltype: (51, 51, 360, 48) × Float64 │ └ features: 48 -> SoleData.AbstractUnivariateFeature[max[V1], min[V1], max[V2], min[V2], ..., min[V22], max[V23], min[V23], max[V24], min[V24]] └[SUPPORT 1] FullMemoset (0 memoized values, 174.42 KBs))

julia> φ = parseformula( "⟨G⟩(min[V1] > -0.54 ∧ ⟨L⟩(max[V3] < -0.78 ∨ min[V5] > -0.84))", SoleLogics.diamondsandboxes(SoleLogics.IARelations); atom_parser = a->Atom(parsecondition(SoleData.ScalarCondition, a; featvaltype = Float64)), ); SyntaxBranch: ⟨G⟩(min[V1] > -0.54 ∧ ⟨L⟩(max[V3] < -0.78 ∨ min[V5] > -0.84))

julia> syntaxstring(φ; variablenamesmap = names(Xdf)) |> println ⟨G⟩(min[X[Hand tip l]] > -0.54 ∧ ⟨L⟩(max[Z[Hand tip l]] < -0.78 ∨ min[Y[Hand tip r]] > -0.84))

julia> check(φ, X) # Query each instance 360-element Vector{Bool}: 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 1 1 1 ...

```

About

The package is developed by the ACLAI Lab @ University of Ferrara.

SoleData.jl provides the data layer for Sole.jl, an open-source framework for symbolic machine learning.

Owner

  • Name: Applied Computational Logic and Artificial Intelligence Laboratory
  • Login: aclai-lab
  • Kind: organization
  • Email: aclai@unife.it
  • Location: Italy

Applied Computational Logic and Artificial Intelligence (ACLAI) Laboratory of the Department of Mathematics and Computer Science, University of Ferrara

GitHub Events

Total
  • Create event: 42
  • Issues event: 20
  • Release event: 6
  • Watch event: 2
  • Delete event: 36
  • Issue comment event: 70
  • Push event: 304
  • Pull request review comment event: 19
  • Pull request review event: 38
  • Pull request event: 40
  • Fork event: 3
Last Year
  • Create event: 42
  • Issues event: 20
  • Release event: 6
  • Watch event: 2
  • Delete event: 36
  • Issue comment event: 70
  • Push event: 304
  • Pull request review comment event: 19
  • Pull request review event: 38
  • Pull request event: 40
  • Fork event: 3

Committers

Last synced: 11 months ago

All Time
  • Total Commits: 445
  • Total Committers: 10
  • Avg Commits per committer: 44.5
  • Development Distribution Score (DDS): 0.369
Past Year
  • Commits: 163
  • Committers: 4
  • Avg Commits per committer: 40.75
  • Development Distribution Score (DDS): 0.233
Top Committers
Name Email Commits
giopaglia 2****a 281
ferdiu f****a@g****m 72
edo-007 e****7@g****m 32
mauro-milella m****o@l****t 18
lorebalbo l****i@e****t 16
Eduard s****d@g****m 9
PasoStudio73 p****3@g****m 9
CompatHelper Julia c****y@j****g 5
PatrikCavina p****a@e****t 2
Alberto Paparella 5****a 1
Committer Domains (Top 20 + Academic)

Issues and Pull Requests

Last synced: 5 months ago

All Time
  • Total issues: 13
  • Total pull requests: 50
  • Average time to close issues: 8 months
  • Average time to close pull requests: 15 days
  • Total issue authors: 6
  • Total pull request authors: 9
  • Average comments per issue: 8.0
  • Average comments per pull request: 0.62
  • Merged pull requests: 26
  • Bot issues: 0
  • Bot pull requests: 12
Past Year
  • Issues: 8
  • Pull requests: 41
  • Average time to close issues: 2 months
  • Average time to close pull requests: 14 days
  • Issue authors: 3
  • Pull request authors: 8
  • Average comments per issue: 0.63
  • Average comments per pull request: 0.71
  • Merged pull requests: 18
  • Bot issues: 0
  • Bot pull requests: 7
Top Authors
Issue Authors
  • PasoStudio73 (4)
  • mauro-milella (3)
  • ferdiu (3)
  • giopaglia (1)
  • JuliaTagBot (1)
  • eduardstan (1)
Pull Request Authors
  • mauro-milella (15)
  • github-actions[bot] (11)
  • PasoStudio73 (11)
  • lorebalbo (4)
  • Perro2110 (3)
  • ferdiu (2)
  • alberto-paparella (2)
  • giopaglia (1)
  • dependabot[bot] (1)
Top Labels
Issue Labels
enhancement (7) help wanted (2) compatibilty issues (2) good first issue (1)
Pull Request Labels
compatibilty issues (4) bug (2) enhancement (1) suggested change (1) dependencies (1) github_actions (1) invalid (1) documentation (1)

Packages

  • Total packages: 1
  • Total downloads:
    • julia 7 total
  • Total dependent packages: 3
  • Total dependent repositories: 0
  • Total versions: 20
juliahub.com: SoleData

Manage logical datasets!

  • Versions: 20
  • Dependent Packages: 3
  • Dependent Repositories: 0
  • Downloads: 7 Total
Rankings
Dependent repos count: 9.8%
Average: 34.7%
Stargazers count: 36.4%
Dependent packages count: 38.1%
Forks count: 54.5%
Last synced: 7 months ago

Dependencies

.github/workflows/TagBot.yml actions
  • JuliaRegistries/TagBot v1 composite
.github/workflows/CompatHelper.yml actions
  • julia-actions/setup-julia v1 composite
.github/workflows/Documentation.yml actions
  • actions/checkout v2 composite
  • julia-actions/setup-julia latest composite
.github/workflows/ci.yml actions
  • actions/checkout v2 composite
  • codecov/codecov-action v3 composite
  • julia-actions/julia-buildpkg v1 composite
  • julia-actions/julia-processcoverage v1 composite
  • julia-actions/julia-runtest v1 composite
  • julia-actions/setup-julia v1 composite