Science Score: 57.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
✓CITATION.cff file
Found CITATION.cff file -
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
✓DOI references
Found 8 DOI reference(s) in README -
○Academic publication links
-
○Committers with academic emails
-
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (12.2%) to scientific vocabulary
Keywords
Repository
Access Mapineq inequality indicators via API
Basic Info
- Host: GitHub
- Owner: e-kotov
- License: other
- Language: R
- Default Branch: main
- Homepage: http://www.ekotov.pro/mapineqr/
- Size: 4.24 MB
Statistics
- Stars: 1
- Watchers: 2
- Forks: 0
- Open Issues: 2
- Releases: 1
Topics
Metadata Files
README.md
mapineqr
The goal of {mapineqr} is to access the data from the Mapineq.org
API and
dashboard (product of the
Mapineq project).
For Python package/module, see https://github.com/e-kotov/mapineqpy.
Installation
Install latest release from R-multiverse:
r
install.packages('mapineqr',
repos = c('https://e-kotov.r-universe.dev', 'https://cloud.r-project.org')
)
You can also install the development version of mapineqr from GitHub:
r
if (!require("pak")) install.packages("pak")
pak::pak("e-kotov/mapineqr")
``` r
load packages used in the examples on this page
library(mapineqr) library(dplyr) library(ggplot2) library(eurostat) library(sf) library(biscale) ```
Basic Example - univariate data and maps
- Get the full list of available data at NUTS 3 level:
``` r library(mapineqr)
availabledata <- misources(level = "3") head(available_data) ```
# A tibble: 52 × 3
source_name short_description description
<chr> <chr> <chr>
1 DEMO_R_D3AREA "Area by NUTS 3 regio" Area by NUTS 3 region (ESTAT)
2 PROJ_19RAASFR3 "Assumptions for fert" Assumptions for fertility rates by age, type of projection and NUTS…
3 PROJ_19RAASMR3 "Assumptions for prob" Assumptions for probability of dying by age, sex, type of projectio…
4 BD_HGNACE2_R3 "Business demography " Business demography and high growth enterprise by NACE Rev. 2 and N…
5 BD_SIZE_R3 "Business demography " Business demography by size class and NUTS 3 regions (ESTAT)
6 CENS_11DWOB_R3 "Conventional dwellin" Conventional dwellings by occupancy status, type of building and NU…
7 CRIM_GEN_REG "Crimes recorded by t" Crimes recorded by the police by NUTS 3 regions (ESTAT)
8 DEMO_R_MAGEC3 "Deaths by age group," Deaths by age group, sex and NUTS 3 region (ESTAT)
9 DEMO_R_MWK3_T "Deaths by week and N" Deaths by week and NUTS 3 region (ESTAT)
10 DEMO_R_MWK3_TS "Deaths by week, sex " Deaths by week, sex and NUTS 3 region (ESTAT)
# ℹ 42 more rows
# ℹ Use `print(n = ...)` to see more rows
- Select data source by
source_namecolumn and check it’s year and NUTS level coverage:
r
mi_source_coverage("CRIM_GEN_REG")
# A tibble: 10 × 5
nuts_level year source_name short_description description
<chr> <chr> <chr> <chr> <chr>
1 0 2008 CRIM_GEN_REG Crimes recorded by t Crimes recorded by the police by NUTS 3 regions (ESTAT)
2 0 2009 CRIM_GEN_REG Crimes recorded by t Crimes recorded by the police by NUTS 3 regions (ESTAT)
3 0 2010 CRIM_GEN_REG Crimes recorded by t Crimes recorded by the police by NUTS 3 regions (ESTAT)
4 1 2008 CRIM_GEN_REG Crimes recorded by t Crimes recorded by the police by NUTS 3 regions (ESTAT)
5 1 2009 CRIM_GEN_REG Crimes recorded by t Crimes recorded by the police by NUTS 3 regions (ESTAT)
6 1 2010 CRIM_GEN_REG Crimes recorded by t Crimes recorded by the police by NUTS 3 regions (ESTAT)
7 2 2008 CRIM_GEN_REG Crimes recorded by t Crimes recorded by the police by NUTS 3 regions (ESTAT)
8 2 2009 CRIM_GEN_REG Crimes recorded by t Crimes recorded by the police by NUTS 3 regions (ESTAT)
9 2 2010 CRIM_GEN_REG Crimes recorded by t Crimes recorded by the police by NUTS 3 regions (ESTAT)
10 3 2008 CRIM_GEN_REG Crimes recorded by t Crimes recorded by the police by NUTS 3 regions (ESTAT)
- Check the available filters for the data source:
r
mi_source_filters("CRIM_GEN_REG", year = 2010, level = "2")
# A tibble: 6 × 4
field field_label label value
<chr> <chr> <chr> <chr>
1 unit Unit of measure Number NR
2 freq Time frequency Annual A
3 iccs International classification of crime for statistical purposes (ICCS) Intentional homicide ICCS0101
4 iccs International classification of crime for statistical purposes (ICCS) Robbery ICCS0401
5 iccs International classification of crime for statistical purposes (ICCS) Burglary of private residential premises ICCS05012
6 iccs International classification of crime for statistical purposes (ICCS) Theft of a motorized land vehicle ICCS050211
- Choose the indicator to filter (let it be burglaries) to and get the data:
r
x <- mi_data(x_source = "CRIM_GEN_REG", year = 2010, level = "2", x_filters = list(iccs = "ICCS05012"))
head(x)
# A tibble: 6 × 4
best_year geo geo_name x
<chr> <chr> <chr> <int>
1 2008 AT11 Burgenland (A) 223
2 2008 AT12 Niederösterreich 2557
3 2008 AT13 Wien 9319
4 2008 AT21 Kärnten 507
5 2008 AT22 Steiermark 1163
6 2008 AT31 Oberösterreich 988
- Map the indicator using NUTS2 polygons:
``` r library(eurostat) library(ggplot2)
load NUTS2 level polygons
nuts2 <- eurostat::geteurostatgeospatial(nuts_level = 2, year = "2010", crs = "4326")
join data to NUTS2 polygons
nuts2crime <- nuts2 |> leftjoin(x, by = "geo")
plot a map of burglaries
mapburglaries <- ggplot(nuts2crime) + geomsf(aes(fill = x)) + scalefillviridisc() + labs(title = "Number of burglaries of private residential premises in 2010") + theme_minimal()
ggsave("man/figures/mapburglaries.png", mapburglaries, width = 8, height = 6, dpi = 200, create.dir = TRUE) ```

Advanced Example - bivariate data and maps
- Select two indicators.
Let those be (1) unemployment rate:
r
mi_source_coverage("TGS00010") |> dplyr::arrange(desc(year))
# A tibble: 12 × 5
nuts_level year source_name short_description description
<chr> <chr> <chr> <chr> <chr>
1 2 2022 TGS00010 Unemployment rate by Unemployment rate by NUTS 2 regions (ESTAT)
2 2 2021 TGS00010 Unemployment rate by Unemployment rate by NUTS 2 regions (ESTAT)
3 2 2020 TGS00010 Unemployment rate by Unemployment rate by NUTS 2 regions (ESTAT)
4 2 2019 TGS00010 Unemployment rate by Unemployment rate by NUTS 2 regions (ESTAT)
5 2 2018 TGS00010 Unemployment rate by Unemployment rate by NUTS 2 regions (ESTAT)
6 2 2017 TGS00010 Unemployment rate by Unemployment rate by NUTS 2 regions (ESTAT)
7 2 2016 TGS00010 Unemployment rate by Unemployment rate by NUTS 2 regions (ESTAT)
8 2 2015 TGS00010 Unemployment rate by Unemployment rate by NUTS 2 regions (ESTAT)
9 2 2014 TGS00010 Unemployment rate by Unemployment rate by NUTS 2 regions (ESTAT)
10 2 2013 TGS00010 Unemployment rate by Unemployment rate by NUTS 2 regions (ESTAT)
11 2 2012 TGS00010 Unemployment rate by Unemployment rate by NUTS 2 regions (ESTAT)
12 2 2011 TGS00010 Unemployment rate by Unemployment rate by NUTS 2 regions (ESTAT)
And (2) life expectancy:
r
mi_source_coverage("DEMO_R_MLIFEXP") |> dplyr::arrange(desc(year))
# A tibble: 96 × 5
nuts_level year source_name short_description description
<chr> <chr> <chr> <chr> <chr>
1 0 2021 DEMO_R_MLIFEXP Life expectancy by a Life expectancy by age, sex and NUTS 2 region (ESTAT)
2 1 2021 DEMO_R_MLIFEXP Life expectancy by a Life expectancy by age, sex and NUTS 2 region (ESTAT)
3 2 2021 DEMO_R_MLIFEXP Life expectancy by a Life expectancy by age, sex and NUTS 2 region (ESTAT)
4 0 2020 DEMO_R_MLIFEXP Life expectancy by a Life expectancy by age, sex and NUTS 2 region (ESTAT)
5 1 2020 DEMO_R_MLIFEXP Life expectancy by a Life expectancy by age, sex and NUTS 2 region (ESTAT)
6 2 2020 DEMO_R_MLIFEXP Life expectancy by a Life expectancy by age, sex and NUTS 2 region (ESTAT)
7 0 2019 DEMO_R_MLIFEXP Life expectancy by a Life expectancy by age, sex and NUTS 2 region (ESTAT)
8 1 2019 DEMO_R_MLIFEXP Life expectancy by a Life expectancy by age, sex and NUTS 2 region (ESTAT)
9 2 2019 DEMO_R_MLIFEXP Life expectancy by a Life expectancy by age, sex and NUTS 2 region (ESTAT)
10 0 2018 DEMO_R_MLIFEXP Life expectancy by a Life expectancy by age, sex and NUTS 2 region (ESTAT)
# ℹ 86 more rows
# ℹ Use `print(n = ...)` to see more rows
- Check for available filters:
r
mi_source_filters("TGS00010", year = 2018, level = "2")
# A tibble: 12 × 4
field field_label label value
<chr> <chr> <chr> <chr>
1 unit Unit of measure Percentage PC
2 isced11 International Standard Classification of Education (ISCED 2011) All ISCED 2011 levels TOTAL
3 isced11 International Standard Classification of Education (ISCED 2011) Less than primary, primary and lower secondary education (levels 0-2) ED0-2
4 isced11 International Standard Classification of Education (ISCED 2011) Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ED3_4
5 isced11 International Standard Classification of Education (ISCED 2011) Tertiary education (levels 5-8) ED5-8
6 isced11 International Standard Classification of Education (ISCED 2011) Unknown UNK
7 isced11 International Standard Classification of Education (ISCED 2011) No response NRP
8 sex Sex Total T
9 sex Sex Males M
10 sex Sex Females F
11 freq Time frequency Annual A
12 age Age class 15 years or over Y_GE15
r
mi_source_filters("DEMO_R_MLIFEXP", year = 2018, level = "2") |> print(n=90)
# A tibble: 91 × 4
field field_label label value
<chr> <chr> <chr> <chr>
1 unit Unit of measure Year YR
2 sex Sex Total T
3 sex Sex Males M
4 sex Sex Females F
5 freq Time frequency Annual A
6 age Age class Less than 1 year Y_LT1
7 age Age class 1 year Y1
8 age Age class 2 years Y2
9 age Age class 3 years Y3
10 age Age class 4 years Y4
11 age Age class 5 years Y5
12 age Age class 6 years Y6
13 age Age class 7 years Y7
14 age Age class 8 years Y8
15 age Age class 9 years Y9
16 age Age class 10 years Y10
17 age Age class 11 years Y11
...
- Get the data for the two indicators:
r
xy_data <- mi_data(
year = 2018,
level = "2",
x_source = "TGS00010", x_filters = list(isced11 = "TOTAL", unit = "PC", age = "Y_GE15", sex = "T", freq = "A"),
y_source = "DEMO_R_MLIFEXP", y_filters = list(unit = "YR", age = "Y_LT1", sex = "T", freq = "A")
)
- Plot the scratterplot:
``` r eduvlifeexpplot <- ggplot(xydata, aes(x = x, y = y)) + geompoint() + labs(x = "Percentage of all adults aged 15 years or over with a degree", y = "Life expectancy at birth") + theme_minimal()
ggsave("man/figures/eduvlifeexpplot.png", eduvlifeexpplot, width = 8, height = 6, units = "in", dpi = 300)
```

- Add the bivariate data to the NUTS2 polygons and create a plot:
r
nuts2 <- eurostat::get_eurostat_geospatial(nuts_level = 2, year = "2016", crs = "4326")
nuts2_edu_v_life_exp <- nuts2 |>
left_join(xy_data, by = "geo")
``` r library(biscale) bidata <- biclass(nuts2eduvlife_exp, x = x, y = y, style = "quantile", dim = 3)
legend <- bi_legend(pal = "GrPink", dim = 3, xlab = " Higher % with a degree", ylab = " Higher life expectancy", size = 8) ```
``` r map <- ggplot() + geomsf(data = bidata, mapping = aes(fill = biclass), color = "white", size = 0.1, show.legend = FALSE) + biscalefill(pal = "GrPink", dim = 3) + labs( title = "Education vs Life Expectancy" ) + bi_theme()
png("man/figures/eduvlifeexpmap.png", width = 8, height = 6, units = "in", res = 300) print(map) print(legend, vp = grid::viewport(x = 0.4, y = .75, width = 0.2, height = 0.2, angle = -45)) dev.off() ```

Citation
To cite the R package and data in publications use:
Kotov E (2024). mapineqr. Access Mapineq inequality indicators via API. doi:10.32614/CRAN.package.mapineqr https://doi.org/10.32614/CRAN.package.mapineqr, https://github.com/e-kotov/mapineqr.
Mills M, Leasure D (2024). “Mapineq Link: Geospatial Dashboard and Database.” doi:10.5281/zenodo.13864000 https://doi.org/10.5281/zenodo.13864000.
BibTeX:
@Manual{mapineqr,
title = {mapineqr. Access Mapineq inequality indicators via API},
author = {Egor Kotov},
year = {2024},
url = {https://github.com/e-kotov/mapineqr},
doi = {10.32614/CRAN.package.mapineqr},
}
@Misc{mapineq_link,
title = {Mapineq Link: Geospatial Dashboard and Database},
author = {Melinda C Mills and Douglas Leasure},
year = {2024},
month = {October},
publisher = {Mapineq deliverables. Turku: INVEST Research Flagship Centre / University of Turku},
doi = {10.5281/zenodo.13864000},
}
Owner
- Name: Egor Kotov
- Login: e-kotov
- Kind: user
- Location: Rostock, Germany
- Company: Max Planck Institute for Demographic Research
- Website: https://www.ekotov.pro/
- Twitter: EgorKotov
- Repositories: 69
- Profile: https://github.com/e-kotov
Spatial Data Scientist, Doctoral Reseacher at @MPIDR and UPF
Citation (CITATION.cff)
# --------------------------------------------
# CITATION file created with {cffr} R package
# See also: https://docs.ropensci.org/cffr/
# --------------------------------------------
cff-version: 1.2.0
message: 'To cite package "mapineqr" in publications use:'
type: software
license: MIT
title: 'mapineqr: Access Mapineq inequality indicators via API'
version: 0.0.0.9000
doi: 10.32614/CRAN.package.mapineqr
abstract: Access Mapineq inequality indicators via API.
authors:
- family-names: Kotov
given-names: Egor
email: kotov.egor@gmail.com
orcid: https://orcid.org/0000-0001-6690-5345
preferred-citation:
type: manual
title: mapineqr. Access Mapineq inequality indicators via API
authors:
- family-names: Kotov
given-names: Egor
email: kotov.egor@gmail.com
orcid: https://orcid.org/0000-0001-6690-5345
year: '2024'
url: https://github.com/e-kotov/mapineqr
doi: 10.32614/CRAN.package.mapineqr
repository-code: https://github.com/e-kotov/mapineqr
url: https://github.com/e-kotov/mapineqr/
contact:
- family-names: Kotov
given-names: Egor
email: kotov.egor@gmail.com
orcid: https://orcid.org/0000-0001-6690-5345
keywords:
- data
- demogrpahy
- r
- rstats
- socio-economic-indicators
references:
- type: generic
title: 'Mapineq Link: Geospatial Dashboard and Database'
authors:
- family-names: Mills
given-names: Melinda C
- family-names: Leasure
given-names: Douglas
year: '2024'
month: '10'
publisher:
name: 'Mapineq deliverables. Turku: INVEST Research Flagship Centre / University
of Turku'
doi: 10.5281/zenodo.13864000
- type: software
title: checkmate
abstract: 'checkmate: Fast and Versatile Argument Checks'
notes: Imports
url: https://mllg.github.io/checkmate/
repository: https://CRAN.R-project.org/package=checkmate
authors:
- family-names: Lang
given-names: Michel
email: michellang@gmail.com
orcid: https://orcid.org/0000-0001-9754-0393
year: '2024'
- type: software
title: dplyr
abstract: 'dplyr: A Grammar of Data Manipulation'
notes: Imports
url: https://dplyr.tidyverse.org
repository: https://CRAN.R-project.org/package=dplyr
authors:
- family-names: Wickham
given-names: Hadley
email: hadley@posit.co
orcid: https://orcid.org/0000-0003-4757-117X
- family-names: François
given-names: Romain
orcid: https://orcid.org/0000-0002-2444-4226
- family-names: Henry
given-names: Lionel
- family-names: Müller
given-names: Kirill
orcid: https://orcid.org/0000-0002-1416-3412
- family-names: Vaughan
given-names: Davis
email: davis@posit.co
orcid: https://orcid.org/0000-0003-4777-038X
year: '2024'
- type: software
title: httr2
abstract: 'httr2: Perform HTTP Requests and Process the Responses'
notes: Imports
url: https://httr2.r-lib.org
repository: https://CRAN.R-project.org/package=httr2
authors:
- family-names: Wickham
given-names: Hadley
email: hadley@posit.co
year: '2024'
- type: software
title: jsonlite
abstract: 'jsonlite: A Simple and Robust JSON Parser and Generator for R'
notes: Imports
url: https://jeroen.r-universe.dev/jsonlite
repository: https://CRAN.R-project.org/package=jsonlite
authors:
- family-names: Ooms
given-names: Jeroen
email: jeroenooms@gmail.com
orcid: https://orcid.org/0000-0002-4035-0289
year: '2024'
- type: software
title: purrr
abstract: 'purrr: Functional Programming Tools'
notes: Imports
url: https://purrr.tidyverse.org/
repository: https://CRAN.R-project.org/package=purrr
authors:
- family-names: Wickham
given-names: Hadley
email: hadley@rstudio.com
orcid: https://orcid.org/0000-0003-4757-117X
- family-names: Henry
given-names: Lionel
email: lionel@rstudio.com
year: '2024'
- type: software
title: rlang
abstract: 'rlang: Functions for Base Types and Core R and ''Tidyverse'' Features'
notes: Imports
url: https://rlang.r-lib.org
repository: https://CRAN.R-project.org/package=rlang
authors:
- family-names: Henry
given-names: Lionel
email: lionel@posit.co
- family-names: Wickham
given-names: Hadley
email: hadley@posit.co
year: '2024'
- type: software
title: tibble
abstract: 'tibble: Simple Data Frames'
notes: Imports
url: https://tibble.tidyverse.org/
repository: https://CRAN.R-project.org/package=tibble
authors:
- family-names: Müller
given-names: Kirill
email: kirill@cynkra.com
orcid: https://orcid.org/0000-0002-1416-3412
- family-names: Wickham
given-names: Hadley
email: hadley@rstudio.com
year: '2024'
- type: software
title: tidyr
abstract: 'tidyr: Tidy Messy Data'
notes: Imports
url: https://tidyr.tidyverse.org
repository: https://CRAN.R-project.org/package=tidyr
authors:
- family-names: Wickham
given-names: Hadley
email: hadley@posit.co
- family-names: Vaughan
given-names: Davis
email: davis@posit.co
- family-names: Girlich
given-names: Maximilian
year: '2024'
- type: software
title: biscale
abstract: 'biscale: Tools and Palettes for Bivariate Thematic Mapping'
notes: Suggests
url: https://chris-prener.github.io/biscale/
repository: https://CRAN.R-project.org/package=biscale
authors:
- family-names: Prener
given-names: Christopher
email: chris.prener@gmail.com
orcid: https://orcid.org/0000-0002-4310-9888
- family-names: Grossenbacher
given-names: Timo
- family-names: Zehr
given-names: Angelo
year: '2024'
- type: software
title: eurostat
abstract: 'eurostat: Tools for Eurostat Open Data'
notes: Suggests
url: https://ropengov.github.io/eurostat/
repository: https://CRAN.R-project.org/package=eurostat
authors:
- family-names: Lahti
given-names: Leo
email: leo.lahti@iki.fi
orcid: https://orcid.org/0000-0001-5537-637X
- family-names: Huovari
given-names: Janne
- family-names: Kainu
given-names: Markus
- family-names: Biecek
given-names: Przemyslaw
year: '2024'
- type: software
title: nuts
abstract: 'nuts: Convert European Regional Data'
notes: Suggests
url: https://docs.ropensci.org/nuts/
repository: https://CRAN.R-project.org/package=nuts
authors:
- family-names: Hennicke
given-names: Moritz
email: AAoritz@posteo.de
orcid: https://orcid.org/0000-0001-6811-1821
- family-names: Krause
given-names: Werner
email: werner.krause@uni-potsdam.de
orcid: https://orcid.org/0000-0002-5069-7964
year: '2024'
identifiers:
- type: url
value: http://www.ekotov.pro/mapineqr/
CodeMeta (codemeta.json)
{
"@context": "https://doi.org/10.5063/schema/codemeta-2.0",
"@type": "SoftwareSourceCode",
"identifier": "mapineqr",
"description": "Access Mapineq inequality indicators via API.",
"name": "mapineqr: Access Mapineq inequality indicators via API",
"relatedLink": "http://www.ekotov.pro/mapineqr/",
"codeRepository": "https://github.com/e-kotov/mapineqr/",
"issueTracker": "https://github.com/e-kotov/mapineqr/issues",
"license": "https://spdx.org/licenses/MIT",
"version": "0.0.0.9000",
"programmingLanguage": {
"@type": "ComputerLanguage",
"name": "R",
"url": "https://r-project.org"
},
"runtimePlatform": "R version 4.4.2 (2024-10-31)",
"author": [
{
"@type": "Person",
"givenName": "Egor",
"familyName": "Kotov",
"email": "kotov.egor@gmail.com",
"@id": "https://orcid.org/0000-0001-6690-5345"
}
],
"maintainer": [
{
"@type": "Person",
"givenName": "Egor",
"familyName": "Kotov",
"email": "kotov.egor@gmail.com",
"@id": "https://orcid.org/0000-0001-6690-5345"
}
],
"softwareSuggestions": [
{
"@type": "SoftwareApplication",
"identifier": "biscale",
"name": "biscale",
"provider": {
"@id": "https://cran.r-project.org",
"@type": "Organization",
"name": "Comprehensive R Archive Network (CRAN)",
"url": "https://cran.r-project.org"
},
"sameAs": "https://CRAN.R-project.org/package=biscale"
},
{
"@type": "SoftwareApplication",
"identifier": "eurostat",
"name": "eurostat",
"provider": {
"@id": "https://cran.r-project.org",
"@type": "Organization",
"name": "Comprehensive R Archive Network (CRAN)",
"url": "https://cran.r-project.org"
},
"sameAs": "https://CRAN.R-project.org/package=eurostat"
},
{
"@type": "SoftwareApplication",
"identifier": "nuts",
"name": "nuts",
"provider": {
"@id": "https://cran.r-project.org",
"@type": "Organization",
"name": "Comprehensive R Archive Network (CRAN)",
"url": "https://cran.r-project.org"
},
"sameAs": "https://CRAN.R-project.org/package=nuts"
}
],
"softwareRequirements": {
"1": {
"@type": "SoftwareApplication",
"identifier": "checkmate",
"name": "checkmate",
"provider": {
"@id": "https://cran.r-project.org",
"@type": "Organization",
"name": "Comprehensive R Archive Network (CRAN)",
"url": "https://cran.r-project.org"
},
"sameAs": "https://CRAN.R-project.org/package=checkmate"
},
"2": {
"@type": "SoftwareApplication",
"identifier": "dplyr",
"name": "dplyr",
"provider": {
"@id": "https://cran.r-project.org",
"@type": "Organization",
"name": "Comprehensive R Archive Network (CRAN)",
"url": "https://cran.r-project.org"
},
"sameAs": "https://CRAN.R-project.org/package=dplyr"
},
"3": {
"@type": "SoftwareApplication",
"identifier": "httr2",
"name": "httr2",
"provider": {
"@id": "https://cran.r-project.org",
"@type": "Organization",
"name": "Comprehensive R Archive Network (CRAN)",
"url": "https://cran.r-project.org"
},
"sameAs": "https://CRAN.R-project.org/package=httr2"
},
"4": {
"@type": "SoftwareApplication",
"identifier": "jsonlite",
"name": "jsonlite",
"provider": {
"@id": "https://cran.r-project.org",
"@type": "Organization",
"name": "Comprehensive R Archive Network (CRAN)",
"url": "https://cran.r-project.org"
},
"sameAs": "https://CRAN.R-project.org/package=jsonlite"
},
"5": {
"@type": "SoftwareApplication",
"identifier": "purrr",
"name": "purrr",
"provider": {
"@id": "https://cran.r-project.org",
"@type": "Organization",
"name": "Comprehensive R Archive Network (CRAN)",
"url": "https://cran.r-project.org"
},
"sameAs": "https://CRAN.R-project.org/package=purrr"
},
"6": {
"@type": "SoftwareApplication",
"identifier": "rlang",
"name": "rlang",
"provider": {
"@id": "https://cran.r-project.org",
"@type": "Organization",
"name": "Comprehensive R Archive Network (CRAN)",
"url": "https://cran.r-project.org"
},
"sameAs": "https://CRAN.R-project.org/package=rlang"
},
"7": {
"@type": "SoftwareApplication",
"identifier": "tibble",
"name": "tibble",
"provider": {
"@id": "https://cran.r-project.org",
"@type": "Organization",
"name": "Comprehensive R Archive Network (CRAN)",
"url": "https://cran.r-project.org"
},
"sameAs": "https://CRAN.R-project.org/package=tibble"
},
"8": {
"@type": "SoftwareApplication",
"identifier": "tidyr",
"name": "tidyr",
"provider": {
"@id": "https://cran.r-project.org",
"@type": "Organization",
"name": "Comprehensive R Archive Network (CRAN)",
"url": "https://cran.r-project.org"
},
"sameAs": "https://CRAN.R-project.org/package=tidyr"
},
"SystemRequirements": null
},
"fileSize": "670.159KB",
"citation": [
{
"@type": "SoftwareSourceCode",
"datePublished": "2024",
"author": [
{
"@type": "Person",
"givenName": "Egor",
"familyName": "Kotov",
"email": "kotov.egor@gmail.com",
"@id": "https://orcid.org/0000-0001-6690-5345"
}
],
"name": "mapineqr. Access Mapineq inequality indicators via API",
"identifier": "10.32614/CRAN.package.mapineqr",
"url": "https://github.com/e-kotov/mapineqr",
"@id": "https://doi.org/10.32614/CRAN.package.mapineqr",
"sameAs": "https://doi.org/10.32614/CRAN.package.mapineqr"
},
{
"@type": "CreativeWork",
"datePublished": "2024",
"author": [
{
"@type": "Person",
"givenName": "Melinda C",
"familyName": "Mills"
},
{
"@type": "Person",
"givenName": "Douglas",
"familyName": "Leasure"
}
],
"name": "Mapineq Link: Geospatial Dashboard and Database",
"identifier": "10.5281/zenodo.13864000",
"@id": "https://doi.org/10.5281/zenodo.13864000",
"sameAs": "https://doi.org/10.5281/zenodo.13864000"
}
],
"readme": "https://github.com/e-kotov/mapineqr/blob/main/README.md",
"contIntegration": "https://github.com/e-kotov/mapineqr/actions/workflows/R-CMD-check.yaml",
"developmentStatus": "https://lifecycle.r-lib.org/articles/stages.html#experimental",
"keywords": [
"data",
"r",
"rstats",
"socio-economic-indicators",
"demogrpahy"
]
}
GitHub Events
Total
- Create event: 5
- Release event: 1
- Issues event: 14
- Watch event: 1
- Delete event: 4
- Issue comment event: 5
- Public event: 1
- Push event: 34
- Pull request event: 8
Last Year
- Create event: 5
- Release event: 1
- Issues event: 14
- Watch event: 1
- Delete event: 4
- Issue comment event: 5
- Public event: 1
- Push event: 34
- Pull request event: 8
Committers
Last synced: about 1 year ago
Top Committers
| Name | Commits | |
|---|---|---|
| Egor Kotov | k****r@g****m | 21 |
Issues and Pull Requests
Last synced: 4 months ago
All Time
- Total issues: 8
- Total pull requests: 8
- Average time to close issues: 16 days
- Average time to close pull requests: about 9 hours
- Total issue authors: 1
- Total pull request authors: 1
- Average comments per issue: 0.63
- Average comments per pull request: 0.0
- Merged pull requests: 8
- Bot issues: 0
- Bot pull requests: 0
Past Year
- Issues: 8
- Pull requests: 8
- Average time to close issues: 16 days
- Average time to close pull requests: about 9 hours
- Issue authors: 1
- Pull request authors: 1
- Average comments per issue: 0.63
- Average comments per pull request: 0.0
- Merged pull requests: 8
- Bot issues: 0
- Bot pull requests: 0
Top Authors
Issue Authors
- e-kotov (8)
Pull Request Authors
- e-kotov (8)
