https://github.com/aksw/frankgraphbench
The FranKGraphBench is a Framework to allow KG Aware RSs to be benchmarked in a reproducible and easy to implement manner. It was first created on Google Summer of Code 2023 for Data Integration between DBpedia and some standard RS datasets in a reproducible framework.
Science Score: 49.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
○CITATION.cff file
-
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
✓DOI references
Found 2 DOI reference(s) in README -
✓Academic publication links
Links to: zenodo.org -
○Academic email domains
-
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (12.9%) to scientific vocabulary
Keywords
Repository
The FranKGraphBench is a Framework to allow KG Aware RSs to be benchmarked in a reproducible and easy to implement manner. It was first created on Google Summer of Code 2023 for Data Integration between DBpedia and some standard RS datasets in a reproducible framework.
Basic Info
- Host: GitHub
- Owner: AKSW
- License: apache-2.0
- Language: Python
- Default Branch: main
- Homepage: https://frankgraphbench.readthedocs.io
- Size: 15.9 MB
Statistics
- Stars: 8
- Watchers: 1
- Forks: 0
- Open Issues: 1
- Releases: 1
Topics
Metadata Files
README.md
FranKGraphBench: Knowledge Graph Aware Recommender Systems Framework for Benchmarking
The FranKGraphBench is a framework to allow KG Aware RSs to be benchmarked in a reproducible and easy to implement manner. It was first created on Google Summer of Code 2023 for Data Integration between DBpedia and some standard RS datasets in a reproducible framework.
Check the docs for more information.
- This repository was first created for Data Integration between DBpedia and some standard Recommender Systems datasets and a framework for reproducible experiments. For more info, check the project proposal and the project progress with weekly (as possible) updates.
Data Integration Usage
pip
We recommend using a python 3.8 virtual environment
shell
pip install pybind11
pip install frankgraphbench
Install the full dataset using bash scripts located at datasets/:
shell
cd datasets
bash ml-100k.sh # Downloaded at `datasets/ml-100k` folder
bash ml-1m.sh # Downloaded at `datasets/ml-1m` folder
Usage
shell
data_integration [-h] -d DATASET -i INPUT_PATH -o OUTPUT_PATH [-ci] [-cu] [-cr] [-cs] [-map] [-enrich] [-w]
Arguments:
- -h: Shows the help message.
- -d: Name of a supported dataset. It will be the same name of the folder created by the bash script provided for the dataset. For now, check data_integration/dataset2class.py to see the supported ones.
- -i: Input path where the full dataset is placed.
- -o: Output path where the integrated dataset will be placed.
- -ci: Use this flag if you want to convert item data.
- -cu: Use this flag if you want to convert user data.
- -cr: Use this flag if you want to convert rating data.
- -cs: Use this flag if you want to convert social link data.
- -map: Use this flag if you want to map dataset items with DBpedia. At least the item data should be already converted.
- -enrich: Use this flag if you want to enrich dataset with DBpedia.
- -w: Choose the number of workers(threads) to be used for parallel queries.
Usage Example:
shell
data_integration -d 'ml-100k' -i 'datasets/ml-100k' -o 'datasets/ml-100k/processed' \
-ci -cu -cr -map -enrich -w 8
source
Install the required packages using python virtualenv, using:
shell
python3 -m venv venv_data_integration/
source venv_data_integration/bin/activate
pip3 install -r requirements_data_integration.txt
Install the full dataset using bash scripts located at datasets/:
shell
cd datasets
bash ml-100k.sh # Downloaded at `datasets/ml-100k` folder
bash ml-1m.sh # Downloaded at `datasets/ml-1m` folder
Usage
shell
python3 src/data_integration.py [-h] -d DATASET -i INPUT_PATH -o OUTPUT_PATH [-ci] [-cu] [-cr] [-cs] [-map] [-enrich] [-w]
Arguments:
- -h: Shows the help message.
- -d: Name of a supported dataset. It will be the same name of the folder created by the bash script provided for the dataset. For now, check data_integration/dataset2class.py to see the supported ones.
- -i: Input path where the full dataset is placed.
- -o: Output path where the integrated dataset will be placed.
- -ci: Use this flag if you want to convert item data.
- -cu: Use this flag if you want to convert user data.
- -cr: Use this flag if you want to convert rating data.
- -cs: Use this flag if you want to convert social link data.
- -map: Use this flag if you want to map dataset items with DBpedia. At least the item data should be already converted.
- -enrich: Use this flag if you want to enrich dataset with DBpedia.
- -w: Choose the number of workers(threads) to be used for parallel queries.
Usage Example:
shell
python3 src/data_integration.py -d 'ml-100k' -i 'datasets/ml-100k' -o 'datasets/ml-100k/processed' \
-ci -cu -cr -map -enrich -w 8
Check Makefile for more examples.
Supported datasets
| Dataset | #items matched | #items | |---------|---------------|---| |MovieLens-100k|1411|1681| |MovieLens-1M|3253|3883| |LastFM-hetrec-2011|8628|17632| |Douban-Movie-Short-Comments-Dataset|24|28|douban-movie| |Yelp-Dataset|---|150348|yelp| |Amazon-Video-Games-5|---|21106|amazon-video_games-5|
Dataset enrichment is done through a fixed DBpedia endpoint available at ..., with raw files download available at ...
Framework for reproducible experiments usage
pip
We recommend using a python 3.8 virtual environment
shell
pip install pybind11
pip install frankgraphbench
Usage
shell
framework -c 'config_files/test.yml'
Arguments:
- -c: Experiment configuration file path.
The experiment config file should be a .yaml file like this:
```yaml experiment: dataset: name: ml-100k item: path: datasets/ml-100k/processed/item.csv extrafeatures: [movieyear, movietitle] user: path: datasets/ml-100k/processed/user.csv extrafeatures: [gender, occupation] ratings: path: datasets/ml-100k/processed/rating.csv timestamp: True enrich: mappath: datasets/ml-100k/processed/map.csv enrichpath: datasets/ml-100k/processed/enriched.csv remove_unmatched: False properties: - type: subject grouped: True sep: "::" - type: director grouped: True sep: "::"
preprocess: - method: filter_kcore parameters: k: 20 iterations: 1 target: user
split: seed: 42 test: method: k_fold k: 2 level: 'user'
models: - name: deepwalkbased config: saveweights: True parameters: walklen: 10 p: 1.0 q: 1.0 nwalks: 50 embedding_size: 64 epochs: 1
evaluation: k: 5 relevance_threshold: 3 metrics: [MAP, nDCG]
report: file: 'experimentresults/ml100kenriched/run1.csv' ```
See the config_files/ directory for more examples.
source
Install the require packages using python virtualenv, using:
shell
python3 -m venv venv_framework/
source venv_framework/bin/activate
pip3 install -r requirements_framework.txt
Usage
shell
python3 src/framework.py -c 'config_files/test.yml'
Arguments:
- -c: Experiment configuration file path.
The experiment config file should be a .yaml file like this:
```yaml experiment: dataset: name: ml-100k item: path: datasets/ml-100k/processed/item.csv extrafeatures: [movieyear, movietitle] user: path: datasets/ml-100k/processed/user.csv extrafeatures: [gender, occupation] ratings: path: datasets/ml-100k/processed/rating.csv timestamp: True enrich: mappath: datasets/ml-100k/processed/map.csv enrichpath: datasets/ml-100k/processed/enriched.csv remove_unmatched: False properties: - type: subject grouped: True sep: "::" - type: director grouped: True sep: "::"
preprocess: - method: filter_kcore parameters: k: 20 iterations: 1 target: user
split: seed: 42 test: method: k_fold k: 2 level: 'user'
models: - name: deepwalkbased config: saveweights: True parameters: walklen: 10 p: 1.0 q: 1.0 nwalks: 50 embedding_size: 64 epochs: 1
evaluation: k: 5 relevance_threshold: 3 metrics: [MAP, nDCG]
report: file: 'experimentresults/ml100kenriched/run1.csv' ```
See the config_files/ directory for more examples.
Chart generation for results usage
Chart generation module based on: https://github.com/hfawaz/cd-diagram
pip
We recommend using a python 3.8 virtual environment
shell
pip install pybind11
pip install frankgraphbench
After obtaining results from some experiments
Usage
shell
chart_generation [-h] -c CHART -p PERFORMANCE_METRIC -f INPUT_FILES -i INPUT_PATH -o OUTPUT_PATH -n FILE_NAME
Arguments:
- -h: Shows the help message.
- -p: Name of the performance metric within the file to use for chart generation.
- -f: List of .csv files to use for generating the chart.
- -i: Path where results data to generate chart is located in .csv files.
- -o: Path where generated charts will be placed.
- -n: Add a name (and file extension) to the chart that will be generated.
Usage Example:
shell
chart_generation -c 'cd-diagram' -p 'MAP@5' -f "['ml-100k.csv', 'ml-1m.csv', 'lastfm.csv', 'ml-100k_enriched.csv', 'ml-1m_enriched.csv', 'lastfm_enriched.csv']" -i 'experiment_results' -o 'charts' -n 'MAP@5.pdf'
Supported charts
| Chart | |-------| |CD-Diagram|
source
Install the required packages using python virtualenv, using:
shell
python3 -m venv venv_chart_generation/
source venv_chart_generation/bin/activate
pip3 install -r requirements_chart_generation.txt
After obtaining results from some experiments
Usage
shell
python3 src/chart_generation.py [-h] -c CHART -p PERFORMANCE_METRIC -f INPUT_FILES -i INPUT_PATH -o OUTPUT_PATH -n FILE_NAME
Arguments:
- -h: Shows the help message.
- -p: Name of the performance metric within the file to use for chart generation.
- -f: List of .csv files to use for generating the chart.
- -i: Path where results data to generate chart is located in .csv files.
- -o: Path where generated charts will be placed.
- -n: Add a name (and file extension) to the chart that will be generated.
Usage Example:
shell
python3 src/chart_generation.py -c 'cd-diagram' -p 'MAP@5' -f "['ml-100k.csv', 'ml-1m.csv', 'lastfm.csv', 'ml-100k_enriched.csv', 'ml-1m_enriched.csv', 'lastfm_enriched.csv']" -i 'experiment_results' -o 'charts' -n 'MAP@5.pdf'
Supported charts
| Chart | |-------| |CD-Diagram|
Owner
- Name: AKSW Research Group @ University of Leipzig
- Login: AKSW
- Kind: organization
- Location: Leipzig
- Website: http://aksw.org
- Repositories: 358
- Profile: https://github.com/AKSW
GitHub Events
Total
- Release event: 1
- Watch event: 2
- Delete event: 2
- Push event: 61
- Pull request event: 5
- Create event: 2
Last Year
- Release event: 1
- Watch event: 2
- Delete event: 2
- Push event: 61
- Pull request event: 5
- Create event: 2
Dependencies
- Babel ==2.13.0
- Jinja2 ==3.1.2
- MarkupSafe ==2.1.3
- PyYAML ==6.0.1
- Pygments ==2.16.1
- alabaster ==0.7.13
- certifi ==2023.7.22
- charset-normalizer ==3.3.0
- docutils ==0.18.1
- idna ==3.4
- imagesize ==1.4.1
- importlib-metadata ==6.8.0
- markdown-it-py ==3.0.0
- mdit-py-plugins ==0.4.0
- mdurl ==0.1.2
- myst-parser ==2.0.0
- packaging ==23.2
- pytz ==2023.3.post1
- requests ==2.31.0
- snowballstemmer ==2.2.0
- sphinx ==7.1.2
- sphinx-rtd-theme ==1.3.0
- sphinxcontrib-applehelp ==1.0.4
- sphinxcontrib-devhelp ==1.0.2
- sphinxcontrib-htmlhelp ==2.0.1
- sphinxcontrib-jquery ==4.1
- sphinxcontrib-jsmath ==1.0.1
- sphinxcontrib-qthelp ==1.0.3
- sphinxcontrib-serializinghtml ==1.1.5
- urllib3 ==2.0.6
- zipp ==3.17.0
- Levenshtein ==0.21.0
- SPARQLWrapper ==2.0.0
- isodate ==0.6.1
- numpy ==1.24.3
- pandas ==2.0.2
- pyparsing ==3.0.9
- python-Levenshtein ==0.21.0
- python-dateutil ==2.8.2
- pytz ==2023.3
- rapidfuzz ==3.0.0
- rdflib ==6.3.2
- six ==1.16.0
- thefuzz ==0.19.0
- tqdm ==4.65.0
- tzdata ==2023.3
- PyYAML ==6.0.1
- gensim ==4.3.1
- joblib ==1.3.2
- networkx ==3.1
- numpy ==1.24.4
- pandas ==2.0.3
- python-dateutil ==2.8.2
- pytz ==2023.3
- scikit-learn ==1.3.0
- scipy ==1.10.1
- six ==1.16.0
- smart-open ==6.3.0
- threadpoolctl ==3.2.0
- tqdm ==4.65.0
- tzdata ==2023.3