https://github.com/alagoz/higec
HiGeC: Hierarchy Generation and Classification Framework
Science Score: 26.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
○CITATION.cff file
-
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
○DOI references
-
○Academic publication links
-
○Academic email domains
-
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (12.1%) to scientific vocabulary
Keywords
data-driven-class-hierarchy-generation
gc
hierarchical-classification
hierarchical-clustering
lcl
lcn
lcpn
multiclass-classification
xgboost-classifier
Last synced: 5 months ago
·
JSON representation
Repository
HiGeC: Hierarchy Generation and Classification Framework
Basic Info
Statistics
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
- Releases: 1
Topics
data-driven-class-hierarchy-generation
gc
hierarchical-classification
hierarchical-clustering
lcl
lcn
lcpn
multiclass-classification
xgboost-classifier
Created about 1 year ago
· Last pushed 6 months ago
Metadata Files
Readme
License
README.md
HiGEC
Hierarchy Generation and Extended Classification Framework
HiGEC is a Python framework for enhancing multi-class classification through automated hierarchy generation (HG) and flexible hierarchy exploitation (HE) strategies. It supports hybrid approaches that integrate hierarchical and flat classifier outputs.
🔧 Installation
```bash git clone https://github.com/alagoz/higec.git cd higec pip install -r requirements.txt ``` **Dependencies:** `numpy` `scipy` `matplotlib` `scikit-learn` `scikit-learn-extra` `proglearn` `xgboost` `lightgbm` ---⚡ Key Features
� **Automatic hierarchy generation** from flat class labels 🧩 **Hybrid HE+F classification strategies** 🖇️ Support for **any scikit-learn compatible classifier** 📊 **Benchmark-ready** with OpenML integration 🌳 **Visualization tools** for hierarchy inspection ---🚀 Quick Start
Run the example: ```bash python run_higec_example.py ``` Pipeline: 1. Downloads OpenML dataset 2. Trains flat classifier baseline 3. Generates class hierarchy 4. Evaluates hierarchical approach ---🛠 Core Components
| File | Purpose | |------------|-----------------------------------| | `HG.py` | Hierarchy generation | | `HE.py` | Hierarchy exploitation | | `hdc.py` | Divisive clustering | | `utils.py` | Data handling & visualization | ---🧪 Customization
Adjust parameters in 'run_higec_example.py': ```bash DID = 46264 # OpenML dataset ID HiGEC = 'CCM[HAC|COMPLETE]-LCPN[ETC]+F[XGB]' # HG + HE scheme CLF_NAME_FC = 'RF' # Flat classifier ``` Available classifiers: `RF`, `XGB`, `ETC`, `LGB`. ---📈 Example Output
```bash Extended Linkage Table: node_id:0, node_type:parent, subsets:[[0], [1,2,3,4]], branch_ids:[0,7], parent_id:None node_id:1, node_type:parent, subsets:[[3,4],[1,2]], branch_ids:[5,6], parent_id:0 ``` ```bash Performance Comparison: - Flat Classification (RF) (f1): 0.3517 in 0.4309 seconds - HiGEC: CCM[HAC|COMPLETE]-LCPN[ETC]+F[XGB] (f1): 0.3700 in 1.1853 seconds ``` Generated Hierarchy:  ---📊 Benchmark Results
HiGEC was evaluated on **100 multi-class tabular datasets**, showing consistent F1-score gains over flat classification (FC), particularly with hybrid HE+F configurations. --- ### Mean F1 Comparison (HiGEC vs FC)📖 References
For more details on methodology, datasets, and evaluations, see the HiGEC GitHub repository.Owner
- Name: Celal ALAGÖZ
- Login: alagoz
- Kind: user
- Repositories: 1
- Profile: https://github.com/alagoz
GitHub Events
Total
- Release event: 1
- Push event: 46
- Create event: 3
Last Year
- Release event: 1
- Push event: 46
- Create event: 3