https://github.com/albumentations-team/autoalbument

AutoML for image augmentation. AutoAlbument uses the Faster AutoAugment algorithm to find optimal augmentation policies. Documentation - https://albumentations.ai/docs/autoalbument/

https://github.com/albumentations-team/autoalbument

Science Score: 10.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
  • codemeta.json file
  • .zenodo.json file
  • DOI references
  • Academic publication links
    Links to: arxiv.org
  • Committers with academic emails
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (10.3%) to scientific vocabulary

Keywords

augmentation automated-machine-learning automl computer-vision deep-learning image-augmentation machine-learning pytorch
Last synced: 5 months ago · JSON representation

Repository

AutoML for image augmentation. AutoAlbument uses the Faster AutoAugment algorithm to find optimal augmentation policies. Documentation - https://albumentations.ai/docs/autoalbument/

Basic Info
Statistics
  • Stars: 207
  • Watchers: 6
  • Forks: 20
  • Open Issues: 30
  • Releases: 0
Topics
augmentation automated-machine-learning automl computer-vision deep-learning image-augmentation machine-learning pytorch
Created over 5 years ago · Last pushed over 4 years ago
Metadata Files
Readme License

README.md

AutoAlbument

AutoAlbument is an AutoML tool that learns image augmentation policies from data using the Faster AutoAugment algorithm. It relieves the user from the burden of manually selecting augmentations and tuning their parameters. AutoAlbument provides a complete ready-to-use configuration for an augmentation pipeline.

The library supports image classification and semantic segmentation tasks. You can use Albumentations to utilize policies discovered by AutoAlbument in your computer vision pipelines.

The documentation is available at https://albumentations.ai/docs/autoalbument/

Benchmarks

Here is a comparison between a baseline augmentation strategy and an augmentation policy discovered by AutoAlbument for different classification and semantic segmentation tasks. You can read more about these benchmarks in the autoalbument-benchmarks repository.

Classification

| Dataset | Baseline Top-1 Accuracy | AutoAlbument Top-1 Accuracy | |----------|:-----------------------:|:----------------------------:| | CIFAR10 | 91.79 | 96.02 | | SVHN | 98.31 | 98.48 | | ImageNet | 73.27 | 75.17 |

Semantic segmentation

| Dataset | Baseline mIOU | AutoAlbument mIOU | |------------|:-------------:|:-----------------:| | Pascal VOC | 73.34 | 75.55 | | Cityscapes | 79.47 | 79.92 |

Installation

AutoAlbument requires Python 3.6 or higher. To install the latest stable version from PyPI:

pip install -U autoalbument

How to use AutoAlbument

How to use AutoAlbument

  1. You need to create a configuration file with AutoAlbument parameters and a Python file that implements a custom PyTorch Dataset for your data. Next, you need to pass those files to AutoAlbument.
  2. AutoAlbument will use Generative Adversarial Network to discover augmentation policies and then create a file containing those policies.
  3. Finally, you can use Albumentations to load augmentation policies from the file and utilize them in your computer vision pipelines.

You can read the detailed description of all steps at https://albumentations.ai/docs/autoalbument/howtouse/

Examples

The examples directory contains example configs for different tasks and datasets:

Classification

Semantic segmentation

To run the search with an example config:

autoalbument-search --config-dir </path/to/directory_with_dataset.py_and_search.yaml>

Owner

  • Name: Albumentations.AI
  • Login: albumentations-team
  • Kind: organization
  • Location: United States of America

Fast and flexible image augmentation library for computer vision tasks. Albumentations helps researchers improve models with diverse training data.

GitHub Events

Total
  • Issues event: 2
  • Watch event: 7
  • Issue comment event: 1
  • Pull request review event: 1
  • Pull request event: 1
  • Fork event: 1
Last Year
  • Issues event: 2
  • Watch event: 7
  • Issue comment event: 1
  • Pull request review event: 1
  • Pull request event: 1
  • Fork event: 1

Committers

Last synced: 9 months ago

All Time
  • Total Commits: 91
  • Total Committers: 1
  • Avg Commits per committer: 91.0
  • Development Distribution Score (DDS): 0.0
Past Year
  • Commits: 0
  • Committers: 0
  • Avg Commits per committer: 0.0
  • Development Distribution Score (DDS): 0.0
Top Committers
Name Email Commits
Alex Parinov c****z@g****m 91

Issues and Pull Requests

Last synced: 6 months ago

All Time
  • Total issues: 43
  • Total pull requests: 6
  • Average time to close issues: about 2 months
  • Average time to close pull requests: 14 minutes
  • Total issue authors: 35
  • Total pull request authors: 3
  • Average comments per issue: 2.19
  • Average comments per pull request: 0.17
  • Merged pull requests: 4
  • Bot issues: 0
  • Bot pull requests: 0
Past Year
  • Issues: 1
  • Pull requests: 1
  • Average time to close issues: N/A
  • Average time to close pull requests: N/A
  • Issue authors: 1
  • Pull request authors: 1
  • Average comments per issue: 0.0
  • Average comments per pull request: 1.0
  • Merged pull requests: 0
  • Bot issues: 0
  • Bot pull requests: 0
Top Authors
Issue Authors
  • andife (4)
  • iumyx2612 (3)
  • ihamdi (2)
  • Violonur-PavelBI (2)
  • LSnyd (2)
  • varunj (1)
  • adam-mehdi (1)
  • saigontrade88 (1)
  • IlyaLion (1)
  • ludeksvoboda (1)
  • learningyan (1)
  • ConstantSun (1)
  • maichm (1)
  • lilianabrandao (1)
  • 1chimaruGin (1)
Pull Request Authors
  • creafz (4)
  • andife (2)
  • MichaelMonashev (1)
Top Labels
Issue Labels
Pull Request Labels

Dependencies

docker/requirements.txt pypi
  • Markdown ==3.3.3
  • Pillow ==8.1.0
  • PyWavelets ==1.1.1
  • PyYAML ==5.3.1
  • Shapely ==1.7.1
  • Werkzeug ==1.0.1
  • absl-py ==0.11.0
  • aiohttp ==3.7.3
  • albumentations ==0.5.2
  • antlr4-python3-runtime ==4.8
  • async-timeout ==3.0.1
  • attrs ==20.3.0
  • cachetools ==4.2.1
  • certifi ==2020.12.5
  • chardet ==3.0.4
  • click ==7.1.2
  • colorama ==0.4.4
  • cycler ==0.10.0
  • decorator ==4.4.2
  • efficientnet-pytorch ==0.6.3
  • fsspec ==0.8.5
  • future ==0.18.2
  • google-auth ==1.27.0
  • google-auth-oauthlib ==0.4.2
  • grpcio ==1.35.0
  • hydra-core ==1.0.6
  • idna ==2.10
  • imageio ==2.9.0
  • imgaug ==0.4.0
  • importlib-resources ==5.1.0
  • kiwisolver ==1.3.1
  • matplotlib ==3.3.4
  • multidict ==5.1.0
  • munch ==2.5.0
  • networkx ==2.5
  • numpy ==1.20.1
  • oauthlib ==3.1.0
  • omegaconf ==2.0.6
  • opencv-python ==4.5.1.48
  • opencv-python-headless ==4.5.1.48
  • pretrainedmodels ==0.7.4
  • protobuf ==3.14.0
  • pyasn1 ==0.4.8
  • pyasn1-modules ==0.2.8
  • pyparsing ==2.4.7
  • python-dateutil ==2.8.1
  • pytorch-lightning ==1.1.8
  • requests ==2.25.1
  • requests-oauthlib ==1.3.0
  • rsa ==4.7.1
  • ruamel.yaml ==0.16.12
  • ruamel.yaml.clib ==0.2.2
  • scikit-image ==0.18.1
  • scipy ==1.6.1
  • segmentation-models-pytorch ==0.1.3
  • six ==1.15.0
  • tensorboard ==2.4.1
  • tensorboard-plugin-wit ==1.8.0
  • tifffile ==2021.2.1
  • timm ==0.3.2
  • tqdm ==4.57.0
  • typing-extensions ==3.7.4.3
  • urllib3 ==1.26.3
  • yarl ==1.6.3
setup.py pypi
  • albumentations >=0.5.1
  • click *
  • colorama *
  • hydra-core >=1.0
  • pytorch-lightning >=1.1.8,<1.2
  • ruamel.yaml *
  • segmentation-models-pytorch >=0.1.3
  • tensorboard *
  • timm ==0.3.2
  • torch >=1.6.0
  • tqdm *
tests_e2e/requirements.txt pypi
  • Markdown ==3.3.3 test
  • Pillow ==8.1.0 test
  • PyWavelets ==1.1.1 test
  • PyYAML ==5.3.1 test
  • Shapely ==1.7.1 test
  • Werkzeug ==1.0.1 test
  • absl-py ==0.11.0 test
  • aiohttp ==3.7.3 test
  • albumentations ==0.5.2 test
  • antlr4-python3-runtime ==4.8 test
  • async-timeout ==3.0.1 test
  • attrs ==20.3.0 test
  • cachetools ==4.2.1 test
  • certifi ==2020.12.5 test
  • chardet ==3.0.4 test
  • click ==7.1.2 test
  • colorama ==0.4.4 test
  • cycler ==0.10.0 test
  • decorator ==4.4.2 test
  • efficientnet-pytorch ==0.6.3 test
  • fsspec ==0.8.5 test
  • future ==0.18.2 test
  • google-auth ==1.27.0 test
  • google-auth-oauthlib ==0.4.2 test
  • grpcio ==1.35.0 test
  • hydra-core ==1.0.6 test
  • idna ==2.10 test
  • imageio ==2.9.0 test
  • imgaug ==0.4.0 test
  • importlib-resources ==5.1.0 test
  • kiwisolver ==1.3.1 test
  • matplotlib ==3.3.4 test
  • multidict ==5.1.0 test
  • munch ==2.5.0 test
  • networkx ==2.5 test
  • numpy ==1.20.1 test
  • oauthlib ==3.1.0 test
  • omegaconf ==2.0.6 test
  • opencv-python ==4.5.1.48 test
  • opencv-python-headless ==4.5.1.48 test
  • pretrainedmodels ==0.7.4 test
  • protobuf ==3.14.0 test
  • pyasn1 ==0.4.8 test
  • pyasn1-modules ==0.2.8 test
  • pyparsing ==2.4.7 test
  • python-dateutil ==2.8.1 test
  • pytorch-lightning ==1.1.8 test
  • requests ==2.25.1 test
  • requests-oauthlib ==1.3.0 test
  • rsa ==4.7.1 test
  • ruamel.yaml ==0.16.12 test
  • ruamel.yaml.clib ==0.2.2 test
  • scikit-image ==0.18.1 test
  • scipy ==1.6.1 test
  • segmentation-models-pytorch ==0.1.3 test
  • six ==1.15.0 test
  • tensorboard ==2.4.1 test
  • tensorboard-plugin-wit ==1.8.0 test
  • tifffile ==2021.2.1 test
  • timm ==0.3.2 test
  • torch ==1.7.1 test
  • torchvision ==0.8.2 test
  • tqdm ==4.57.0 test
  • typing-extensions ==3.7.4.3 test
  • urllib3 ==1.26.3 test
  • yarl ==1.6.3 test