https://github.com/biometris/statgenmpp
See https://biometris.github.io/statgenMPP for a full description
Science Score: 36.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
○CITATION.cff file
-
✓codemeta.json file
Found codemeta.json file -
○.zenodo.json file
-
✓DOI references
Found 1 DOI reference(s) in README -
✓Academic publication links
Links to: springer.com -
○Academic email domains
-
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (18.6%) to scientific vocabulary
Keywords
cran
genetics
mpp
qtl-mapping
r-package
Last synced: 5 months ago
·
JSON representation
Repository
See https://biometris.github.io/statgenMPP for a full description
Basic Info
- Host: GitHub
- Owner: Biometris
- Language: R
- Default Branch: main
- Homepage: https://biometris.github.io/statgenMPP
- Size: 11.8 MB
Statistics
- Stars: 1
- Watchers: 4
- Forks: 1
- Open Issues: 1
- Releases: 0
Topics
cran
genetics
mpp
qtl-mapping
r-package
Created almost 4 years ago
· Last pushed about 1 year ago
Metadata Files
Readme
Changelog
README.Rmd
---
output: github_document
---
```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "man/figures/README-",
out.width = "100%"
)
```
# statgenMPP
[](https://www.r-pkg.org/pkg/statgenMPP)
[](https://www.r-pkg.org/pkg/statgenMPP)
[](https://github.com/Biometris/statgenMPP/actions?workflow=R-CMD-check)
[](https://app.codecov.io/gh/Biometris/statgenMPP)
The statgenMPP package is developed as an easy-to-use package for QTL mapping in biparental and multi-parent populations. The package has many ways of visualizing inputs and results. First Identity By Descent (IBD) probabilities are computed using Hidden Markov Models. These probabilities are then used in a mixed model approach for QTL Mapping as described in [Li et al. 2021](https://link.springer.com/article/10.1007/s00122-021-03919-7).
* Install from CRAN:
```{r, eval = FALSE}
install.packages("statgenMPP")
```
* Install latest development version from GitHub (requires [remotes](https://github.com/r-lib/remotes) package):
```{r, eval = FALSE}
remotes::install_github("Biometris/statgenMPP", ref = "develop", dependencies = TRUE)
```
## Example
Here we give a simple example, using a single biparental population. The example contains simulated data for one F4DH population. The population type F4DH is a cross between two parents, A and C, followed by 3 generations of selfings, followed by a DH generation, see [statgenIBD](https://biometris.github.io/statgenIBD/) for details.
First we load the marker data and phenotypic data and calculate the IBDs using the `calcIBDMPP` function:
```{r simIBD}
library(statgenMPP)
markerFiles <- system.file("extdata/multipop", "AxC.txt",
package = "statgenMPP")
mapFile <- system.file("extdata/multipop", "mapfile.txt",
package = "statgenMPP")
phenoDat <- read.delim(system.file("extdata/multipop", "AxBxCpheno.txt",
package = "statgenMPP"))
ACMPP <- calcIBDMPP(crossNames = c("AxC"),
markerFiles = markerFiles,
pheno = phenoDat,
popType = "F4DH",
mapFile = mapFile,
evalDist = 5)
```
The population has the following simple structure, for more complicated examples see the vignette.
```{r plotPACMPP}
plot(ACMPP, plotType = "pedigree")
```
The next step is to select QTLs using `selQTLMPP`:
```{r ACMQM}
ACMQM <- selQTLMPP(MPPobj = ACMPP, trait = "yield", threshold = 3)
```
The QTL-mapping profile and parental effects:
```{r plotQPEACMQM}
plot(ACMQM, plotType = "QTLProfileExt")
```
The confidence intervals around the parental effects for each QTL:
```{r plotCIACMQM}
plot(ACMQM, plotType = "parCIs")
```
A summary of the QTL-analyis gives a short overview containing the total number of markers and the number of QTLs found. Also for all QTLs their position on the chromosome is shown as well as the nearest marker on the original map, the explained variance, and the effects and the standard errors of all parents:
```{r sumACMQM}
## Print summary
summary(ACMQM)
```
Owner
- Name: Wageningen Universtiy & Research, Biometris
- Login: Biometris
- Kind: organization
- Email: biometris@wur.nl
- Location: Wageningen, The Netherlands
- Website: https://wur.eu/biometris
- Repositories: 8
- Profile: https://github.com/Biometris
Biometris develops statistical and mathematical methods for the quantification of biological processes and processes in our living environment.
GitHub Events
Total
- Release event: 1
- Push event: 49
- Create event: 2
Last Year
- Release event: 1
- Push event: 49
- Create event: 2
Packages
- Total packages: 1
-
Total downloads:
- cran 299 last-month
- Total docker downloads: 21,613
- Total dependent packages: 0
- Total dependent repositories: 0
- Total versions: 6
- Total maintainers: 1
cran.r-project.org: statgenMPP
QTL Mapping for Multi Parent Populations
- Homepage: https://biometris.github.io/statgenMPP/index.html
- Documentation: http://cran.r-project.org/web/packages/statgenMPP/statgenMPP.pdf
- License: GPL (≥ 3)
-
Latest release: 1.0.4
published about 1 year ago
Rankings
Dependent packages count: 29.8%
Dependent repos count: 35.5%
Average: 37.1%
Downloads: 46.1%
Maintainers (1)
Last synced:
6 months ago
Dependencies
DESCRIPTION
cran
- R >= 3.6 depends
- statgenGWAS >= 1.0.8 depends
- LMMsolver * imports
- Matrix * imports
- data.table * imports
- foreach * imports
- ggplot2 * imports
- gridExtra * imports
- scales * imports
- spam * imports
- statgenIBD >= 1.0.4 imports
- stringi * imports
- knitr * suggests
- rmarkdown * suggests
- tinytest * suggests
.github/workflows/check.yaml
actions
- actions/checkout v3 composite
- r-lib/actions/check-r-package v2 composite
- r-lib/actions/setup-pandoc v2 composite
- r-lib/actions/setup-r v2 composite
- r-lib/actions/setup-r-dependencies v2 composite
.github/workflows/pkgdown.yaml
actions
- JamesIves/github-pages-deploy-action v4.4.1 composite
- actions/checkout v3 composite
- r-lib/actions/setup-pandoc v2 composite
- r-lib/actions/setup-r v2 composite
- r-lib/actions/setup-r-dependencies v2 composite
.github/workflows/test-coverage.yaml
actions
- actions/checkout v3 composite
- r-lib/actions/setup-r v2 composite
- r-lib/actions/setup-r-dependencies v2 composite