https://github.com/biometris/lmmsolver
See https://biometris.github.io/LMMsolver for a full description
Science Score: 49.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
○CITATION.cff file
-
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
✓DOI references
Found 3 DOI reference(s) in README -
✓Academic publication links
Links to: zenodo.org -
○Academic email domains
-
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (17.8%) to scientific vocabulary
Keywords
cran
mixed-models
r-package
splines
Last synced: 5 months ago
·
JSON representation
Repository
See https://biometris.github.io/LMMsolver for a full description
Basic Info
- Host: GitHub
- Owner: Biometris
- Language: R
- Default Branch: main
- Homepage: https://biometris.github.io/LMMsolver
- Size: 35.3 MB
Statistics
- Stars: 16
- Watchers: 4
- Forks: 2
- Open Issues: 0
- Releases: 3
Topics
cran
mixed-models
r-package
splines
Created over 4 years ago
· Last pushed 6 months ago
Metadata Files
Readme
Changelog
README.Rmd
---
output: github_document
bibliography: ./vignettes/bibliography.bib
---
```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "man/figures/README-",
out.width = "70%"
)
```
# LMMsolver
[](https://www.r-pkg.org/pkg/LMMsolver)
[](https://www.r-pkg.org/pkg/LMMsolver)
[](https://github.com/Biometris/LMMsolver/actions?workflow=R-CMD-check)
[](https://app.codecov.io/gh/Biometris/LMMsolver)
[](https://doi.org/10.5281/zenodo.14527379)
The aim of the `LMMsolver` package is to provide an efficient and flexible system to estimate variance components using restricted maximum likelihood or REML [@Patterson1971], for models where the mixed model equations are sparse. An important feature of the package is smoothing with P-splines [@Eilers1996]. The sparse mixed model P-splines formulation [@boer2023] is used, which makes the computations fast. The computational advantage of the sparse mixed model formulation is especially clear for two-dimensional smoothing [@boer2023;@carollo2024].
## Installation
* Install from CRAN:
```{r, eval = FALSE}
install.packages("LMMsolver")
```
* Install latest development version from GitHub (requires [remotes](https://github.com/r-lib/remotes) package):
```{r, eval = FALSE}
remotes::install_github("Biometris/LMMsolver", ref = "develop", dependencies = TRUE)
```
## Example
As an example of the functionality of the package we use the `USprecip` data set in the `spam` package [@Furrer2010].
```{r USprecip data}
library(LMMsolver)
library(ggplot2)
## Get precipitation data from spam
data(USprecip, package = "spam")
## Only use observed data.
USprecip <- as.data.frame(USprecip)
USprecip <- USprecip[USprecip$infill == 1, ]
head(USprecip[, c(1, 2, 4)], 3)
```
A two-dimensional P-spline can be defined with the `spl2D()` function, with longitude and latitude as covariates, and anomaly (standardized monthly total precipitation) as response variable:
```{r runobj}
obj1 <- LMMsolve(fixed = anomaly ~ 1,
spline = ~spl2D(x1 = lon, x2 = lat, nseg = c(41, 41)),
data = USprecip)
```
The spatial trend for the precipitation can now be plotted on the map of the USA, using the `predict` function of `LMMsolver`:
```{r Plot_USprecip, fig.alt="Precipitation anomaly USA"}
lon_range <- range(USprecip$lon)
lat_range <- range(USprecip$lat)
newdat <- expand.grid(lon = seq(lon_range[1], lon_range[2], length = 200),
lat = seq(lat_range[1], lat_range[2], length = 300))
plotDat <- predict(obj1, newdata = newdat)
plotDat <- sf::st_as_sf(plotDat, coords = c("lon", "lat"))
usa <- sf::st_as_sf(maps::map("usa", regions = "main", plot = FALSE))
sf::st_crs(usa) <- sf::st_crs(plotDat)
intersection <- sf::st_intersects(plotDat, usa)
plotDat <- plotDat[!is.na(as.numeric(intersection)), ]
ggplot(usa) +
geom_sf(color = NA) +
geom_tile(data = plotDat,
mapping = aes(geometry = geometry, fill = ypred),
linewidth = 0,
stat = "sf_coordinates") +
scale_fill_gradientn(colors = topo.colors(100))+
labs(title = "Precipitation (anomaly)",
x = "Longitude", y = "Latitude") +
coord_sf() +
theme(panel.grid = element_blank())
```
Further examples can be found in the vignette.
```r
vignette("Solving_Linear_Mixed_Models")
```
# References
Owner
- Name: Wageningen Universtiy & Research, Biometris
- Login: Biometris
- Kind: organization
- Email: biometris@wur.nl
- Location: Wageningen, The Netherlands
- Website: https://wur.eu/biometris
- Repositories: 8
- Profile: https://github.com/Biometris
Biometris develops statistical and mathematical methods for the quantification of biological processes and processes in our living environment.
GitHub Events
Total
- Release event: 3
- Watch event: 6
- Push event: 118
- Fork event: 2
- Create event: 3
Last Year
- Release event: 3
- Watch event: 6
- Push event: 118
- Fork event: 2
- Create event: 3
Packages
- Total packages: 1
-
Total downloads:
- cran 794 last-month
- Total docker downloads: 21,613
- Total dependent packages: 2
- Total dependent repositories: 2
- Total versions: 12
- Total maintainers: 1
cran.r-project.org: LMMsolver
Linear Mixed Model Solver
- Homepage: https://biometris.github.io/LMMsolver/index.html
- Documentation: http://cran.r-project.org/web/packages/LMMsolver/LMMsolver.pdf
- License: GPL-3
-
Latest release: 1.0.11
published 6 months ago
Rankings
Dependent packages count: 17.7%
Dependent repos count: 19.6%
Average: 21.2%
Downloads: 26.4%
Maintainers (1)
Last synced:
6 months ago
Dependencies
.github/workflows/check.yaml
actions
- actions/checkout v3 composite
- r-lib/actions/check-r-package v2 composite
- r-lib/actions/setup-pandoc v2 composite
- r-lib/actions/setup-r v2 composite
- r-lib/actions/setup-r-dependencies v2 composite
.github/workflows/pkgdown.yaml
actions
- JamesIves/github-pages-deploy-action v4.4.1 composite
- actions/checkout v3 composite
- r-lib/actions/setup-pandoc v2 composite
- r-lib/actions/setup-r v2 composite
- r-lib/actions/setup-r-dependencies v2 composite
.github/workflows/test-coverage.yaml
actions
- actions/checkout v3 composite
- r-lib/actions/setup-r v2 composite
- r-lib/actions/setup-r-dependencies v2 composite
DESCRIPTION
cran
- R >= 3.6 depends
- Matrix * imports
- Rcpp >= 0.10.4 imports
- agridat * imports
- ggplot2 * imports
- maps * imports
- methods * imports
- sp * imports
- spam * imports
- splines * imports
- knitr * suggests
- rmarkdown * suggests
- tinytest * suggests