mikropml
mikropml: User-Friendly R Package for Supervised Machine Learning Pipelines - Published in JOSS (2021)
Science Score: 95.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
○CITATION.cff file
-
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
✓DOI references
Found 7 DOI reference(s) in README and JOSS metadata -
✓Academic publication links
Links to: joss.theoj.org -
✓Committers with academic emails
6 of 20 committers (30.0%) from academic institutions -
○Institutional organization owner
-
✓JOSS paper metadata
Published in Journal of Open Source Software
Keywords
Keywords from Contributors
Repository
User-Friendly R Package for Supervised Machine Learning Pipelines
Basic Info
- Host: GitHub
- Owner: SchlossLab
- License: other
- Language: R
- Default Branch: main
- Homepage: http://www.schlosslab.org/mikropml
- Size: 145 MB
Statistics
- Stars: 59
- Watchers: 7
- Forks: 20
- Open Issues: 14
- Releases: 13
Topics
Metadata Files
README.Rmd
---
output:
github_document
---
```{r setup, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "man/figures/README-",
out.width = "100%"
)
```
# mikropml
> meek-ROPE em el
User-Friendly R Package for Supervised Machine Learning Pipelines
[](https://github.com/SchlossLab/mikropml/actions?query=workflow%3Acheck+branch%3Amain)
[](https://app.codecov.io/gh/SchlossLab/mikropml)
[](https://github.com/SchlossLab/mikropml/blob/main/LICENSE.md)
[](https://CRAN.R-project.org/package=mikropml)
[](https://anaconda.org/conda-forge/r-mikropml)
[](https://doi.org/10.21105/joss.03073)
An interface to build machine learning models for classification and regression
problems. `mikropml` implements the ML pipeline described by [Topçuoğlu _et al._
(2020)](https://doi.org/doi:10.1128/mBio.00434-20) with reasonable default
options for data preprocessing, hyperparameter tuning, cross-validation,
testing, model evaluation, and interpretation steps. See the
[website](http://www.schlosslab.org/mikropml/) for more information,
documentation, and examples.
## Installation
You can install the latest release from
[CRAN](https://cran.r-project.org/package=mikropml):
```{r install_cran, eval = FALSE}
install.packages('mikropml')
```
or the development version from
[GitHub](https://github.com/SchlossLab/mikRopML):
```{r install_github, eval = FALSE}
# install.packages("devtools")
devtools::install_github("SchlossLab/mikropml")
```
or install from a terminal using
[conda](https://docs.conda.io/projects/conda/en/latest/index.html)
or [mamba](https://mamba.readthedocs.io/en/latest/):
```{bash conda, eval = FALSE}
mamba install -c conda-forge r-mikropml
```
### Dependencies
```{r deps, echo = FALSE, message = FALSE, warning = FALSE}
library(dplyr)
description <- utils::packageDescription('mikropml',
fields = c('Imports', 'Suggests'))
deps <- lapply(names(description),
function (x) {
paste0('- ', x, ': ',
description[[x]] %>%
gsub("\n", " ", .))}
) %>%
unlist() %>%
paste(., collapse = '\n')
```
`r deps`
## Usage
Check out the [introductory
vignette](http://www.schlosslab.org/mikropml/articles/introduction.html) for a
quick start tutorial. For a more in-depth discussion, read [all the
vignettes](http://www.schlosslab.org/mikropml/articles/index.html) and/or take a
look at the [reference
documentation](http://www.schlosslab.org/mikropml/reference/index.html).
You can watch the Riffomonas Project series of
[video tutorials](https://www.youtube.com/playlist?list=PLmNrK_nkqBpKpzb9-vI4V7SdXC-jXEcmg)
covering mikropml and other skills related to machine learning.
We also provide a
[Snakemake workflow](https://github.com/SchlossLab/mikropml-snakemake-workflow)
for running `mikropml` locally or on an HPC.
We highly recommend running `mikropml` with Snakemake or another workflow
management system for reproducibility and scalability of ML analyses.
## Help & Contributing
If you come across a bug,
[open an issue](https://github.com/SchlossLab/mikropml/issues)
and include a
[minimal reproducible example](https://www.tidyverse.org/help/).
If you have questions, create a new post in
[Discussions](https://github.com/SchlossLab/mikropml/discussions).
If you'd like to contribute, see our guidelines
[here](http://www.schlosslab.org/mikropml/CONTRIBUTING.html).
## Code of Conduct
Please note that the mikropml project is released with a [Contributor Code of
Conduct](http://www.schlosslab.org/mikropml/CODE_OF_CONDUCT.html). By
contributing to this project, you agree to abide by its terms.
## License
The mikropml package is licensed under
[the MIT license](https://github.com/SchlossLab/mikropml/blob/main/LICENSE.md).
Text and images included in this repository, including the mikropml logo,
are licensed under the [CC BY 4.0 license](https://creativecommons.org/licenses/by/4.0/).
## Citation
To cite mikropml in publications, use:
> ```{r cite_text, echo = FALSE, results = 'asis'}
> cat(format(citation('mikropml'), style = 'html'))
> ```
A BibTeX entry for LaTeX users is:
```{r cite_bibtex, echo = FALSE, comment = '', results = 'asis'}
cat("```\n", format(citation('mikropml'), style = 'bibtex'), "\n```")
```
## Why the name?
The word "mikrop" (pronounced "meek-ROPE") is Turkish for "microbe". This
package was originally implemented as a machine learning pipeline for
microbiome-based classification problems (see [Topçuoğlu _et al._
2020](https://doi.org/10.1128/mBio.00434-20)). We realized that these methods
are applicable in many other fields too, but stuck with the name because we like
it!
Owner
- Name: SchlossLab
- Login: SchlossLab
- Kind: organization
- Email: pschloss@umich.edu
- Repositories: 91
- Profile: https://github.com/SchlossLab
The laboratory of Pat Schloss at the University of Michigan
JOSS Publication
mikropml: User-Friendly R Package for Supervised Machine Learning Pipelines
Authors
Department of Microbiology & Immunology, University of Michigan, Exploratory Science Center, Merck & Co., Inc., Cambridge, Massachusetts, USA.
Tags
machine learning regression classification decision trees random forest xgboost support vector machines microbiologyPapers & Mentions
Total mentions: 1
mikropml: User-Friendly R Package for Supervised Machine Learning Pipelines
- DOI: 10.21105/joss.03073
- OpenAlex ID: https://openalex.org/W3160777631
- Published: May 2021
GitHub Events
Total
- Create event: 7
- Release event: 1
- Issues event: 6
- Watch event: 4
- Delete event: 3
- Issue comment event: 12
- Push event: 35
- Pull request review event: 1
- Pull request event: 13
- Fork event: 3
Last Year
- Create event: 7
- Release event: 1
- Issues event: 6
- Watch event: 4
- Delete event: 3
- Issue comment event: 12
- Push event: 35
- Pull request review event: 1
- Pull request event: 13
- Fork event: 3
Committers
Last synced: 7 months ago
Top Committers
| Name | Commits | |
|---|---|---|
| Kelly Sovacool | k****l@g****m | 1,044 |
| github-actions[bot] | 4****] | 405 |
| Zena Lapp | z****p@g****m | 163 |
| Begüm D. Topçuoğlu | 3****u | 100 |
| BegumTop | b****p@u****u | 52 |
| Begum Topcuoglu | b****u@m****m | 21 |
| Nick Lesniak | N****k@u****u | 21 |
| William L. Close | c****l@g****m | 13 |
| Courtney Armour | c****r@g****m | 11 |
| Pat Schloss | p****s@u****u | 8 |
| Lucas Bishop | b****5@g****m | 3 |
| Ariangela J. Kozik | a****o@g****m | 3 |
| Begum Topcuoglu | b****p@g****u | 3 |
| sklucas | s****s | 2 |
| tomkoset | t****t@u****u | 2 |
| Begum Topcuoglu | b****p@g****u | 2 |
| JMAStough | j****h@g****m | 1 |
| Samara Rifkin | s****7@y****m | 1 |
| Teun van den Brand | t****d@g****m | 1 |
| agarretto96 | a****6@g****m | 1 |
Committer Domains (Top 20 + Academic)
Issues and Pull Requests
Last synced: 6 months ago
All Time
- Total issues: 53
- Total pull requests: 69
- Average time to close issues: 5 months
- Average time to close pull requests: 5 days
- Total issue authors: 22
- Total pull request authors: 8
- Average comments per issue: 1.25
- Average comments per pull request: 0.74
- Merged pull requests: 58
- Bot issues: 0
- Bot pull requests: 0
Past Year
- Issues: 3
- Pull requests: 12
- Average time to close issues: about 1 month
- Average time to close pull requests: about 5 hours
- Issue authors: 3
- Pull request authors: 4
- Average comments per issue: 0.67
- Average comments per pull request: 0.0
- Merged pull requests: 3
- Bot issues: 0
- Bot pull requests: 0
Top Authors
Issue Authors
- kelly-sovacool (26)
- pschloss (4)
- zenalapp (3)
- ecmaggioncalda (2)
- sskoldas (1)
- dansmith01 (1)
- Benjamin-Valderrama (1)
- SWi1 (1)
- NLesniak (1)
- joannacolovas (1)
- Hesham999666 (1)
- zhq90 (1)
- marwa38 (1)
- TuomasBorman (1)
- alexmsalmeida (1)
Pull Request Authors
- kelly-sovacool (56)
- zenalapp (4)
- courtneyarmour (3)
- TuomasBorman (2)
- teunbrand (1)
- BTopcuoglu (1)
- megancoden (1)
- Benjamin-Valderrama (1)
Top Labels
Issue Labels
Pull Request Labels
Packages
- Total packages: 2
-
Total downloads:
- cran 498 last-month
- Total docker downloads: 99
-
Total dependent packages: 0
(may contain duplicates) -
Total dependent repositories: 7
(may contain duplicates) - Total versions: 24
- Total maintainers: 1
cran.r-project.org: mikropml
User-Friendly R Package for Supervised Machine Learning Pipelines
- Homepage: https://www.schlosslab.org/mikropml/
- Documentation: http://cran.r-project.org/web/packages/mikropml/mikropml.pdf
- License: MIT + file LICENSE
-
Latest release: 1.6.2
published 6 months ago
Rankings
Maintainers (1)
conda-forge.org: r-mikropml
An interface to build machine learning models for classification and regression problems. 'mikropml' implements the ML pipeline described by Topçuoğlu et al. (2020) <doi:10.1128/mBio.00434-20> with reasonable default options for data preprocessing, hyperparameter tuning, cross-validation, testing, model evaluation, and interpretation steps. See the website <http://www.schlosslab.org/mikropml/> for more information, documentation, and examples.
- Homepage: http://www.schlosslab.org/mikropml/
- License: MIT
-
Latest release: 1.4.0
published over 3 years ago
Rankings
Dependencies
- R >= 4.1.0 depends
- MLmetrics * imports
- caret * imports
- dplyr * imports
- e1071 * imports
- glmnet * imports
- kernlab * imports
- randomForest * imports
- rlang * imports
- rpart * imports
- stats * imports
- utils * imports
- xgboost * imports
- doFuture * suggests
- foreach * suggests
- future * suggests
- future.apply * suggests
- ggplot2 * suggests
- knitr * suggests
- progress * suggests
- progressr * suggests
- purrr * suggests
- rmarkdown * suggests
- testthat * suggests
- tidyr * suggests
- actions/checkout v2 composite
- actions/upload-artifact main composite
- r-lib/actions/check-r-package v2 composite
- r-lib/actions/setup-pandoc v2 composite
- r-lib/actions/setup-r v2 composite
- r-lib/actions/setup-r-dependencies v2 composite
- actions/checkout v2 composite
- ad-m/github-push-action master composite
- actions/checkout v2 composite
- ad-m/github-push-action master composite
- r-lib/actions/setup-pandoc v2 composite
- r-lib/actions/setup-r v2 composite
- actions/cache v1 composite
- actions/checkout v2 composite
- r-lib/actions/setup-pandoc v2 composite
- r-lib/actions/setup-r v2 composite