rgee

rgee: An R package for interacting with Google Earth Engine - Published in JOSS (2020)

https://github.com/r-spatial/rgee

Science Score: 100.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
    Found CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
    Found 4 DOI reference(s) in README and JOSS metadata
  • Academic publication links
    Links to: joss.theoj.org, zenodo.org
  • Committers with academic emails
    3 of 22 committers (13.6%) from academic institutions
  • Institutional organization owner
  • JOSS paper metadata
    Published in Journal of Open Source Software

Keywords

earth-engine earthengine google-earth-engine googleearthengine r spatial-analysis spatial-data

Scientific Fields

Engineering Computer Science - 60% confidence
Last synced: 4 months ago · JSON representation ·

Repository

Google Earth Engine for R

Basic Info
Statistics
  • Stars: 741
  • Watchers: 38
  • Forks: 155
  • Open Issues: 60
  • Releases: 15
Topics
earth-engine earthengine google-earth-engine googleearthengine r spatial-analysis spatial-data
Created over 6 years ago · Last pushed 4 months ago
Metadata Files
Readme Changelog Contributing License Code of conduct Citation

README.md


Markdownify Markdownify Markdownify
rgee: Google Earth Engine for R

rgee is an R binding package for calling Google Earth Engine API from within R. Various functions are implemented to simplify the connection with the R spatial ecosystem.

Open in Colab R build status Project Status: Active – The project has reached a stable, usable
state and is being actively
developed. codecov License lifecycle status CRAN
status DOI CRAN status
Buy Me A Coffee

Installation  • Hello World  • How does rgee work?  • Guides  • Contributing  • Citation  • Credits

What is Google Earth Engine?

Google Earth Engine is a cloud-based platform that enables users to access a petabyte-scale archive of remote sensing data and conduct geospatial analysis on Google's infrastructure. Currently, Google offers support only for Python and JavaScript. rgee fills that gap by providing support for R!. Below, you will find a comparison between the syntax of rgee and the two other client libraries supported by Google.

JS (Code Editor) Python R
``` javascript var db = 'CGIAR/SRTM90_V4' var image = ee.Image(db) print(image.bandNames()) #> 'elevation' ``` ``` python import ee ee.Initialize(project = "my-project-id") db = 'CGIAR/SRTM90_V4' image = ee.Image(db) image.bandNames().getInfo() #> [u'elevation'] ``` ``` r library(rgee) ee_Initialize(project = "my-project-id") db <- 'CGIAR/SRTM90_V4' image <- ee$Image(db) image$bandNames()$getInfo() #> [1] "elevation" ```

Quite similar, isn't it?. However, additional more minor changes should be considered when using Google Earth Engine with R. Please check the consideration section before you start coding!

How to use

NOTE: Create a .Renviron file file to prevent setting RETICULATEPYTHON and EARTHENGINEGCLOUD every time you authenticate/init your account.

``` r library(rgee)

Set your Python ENV

Sys.setenv("RETICULATE_PYTHON" = "/usr/bin/python3")

Set Google Cloud SDK. Only need it the first time you log in.

Sys.setenv("EARTHENGINEGCLOUD" = "home/csaybar/google-cloud-sdk/bin/") eeAuthenticate()

Initialize your Earth Engine Session

ee_Initialize(project = "my-project-id") ```

Earth Engine initialization

You will need to create and register a Google Cloud project to use Earth Engine (via rgee). See the following "Installation" section for instructions. The ID of the Cloud project will need to be supplied to ee_Initialize each time you start a new rgee session. Whenever you see "my-project-id" in rgee example code, replace the string with your specific Cloud project ID. For more information on these topics see about Earth Engine access and authentication and inialization pages.

Installation

Install from CRAN with:

r install.packages("rgee")

Install the development versions from github with

r library(remotes) install_github("r-spatial/rgee")

Furthermore, rgee depends on numpy and earthengine-api and it requires gcloud CLI to authenticate new users. The following example shows how to install and set up 'rgee' on a new Ubuntu computer. If you intend to use rgee on a server, please refer to this example in RStudio Cloud." -- https://posit.cloud/content/5175749)

Create and register a Google Cloud project. Follow the Earth Engine access instructions.

``` r install.packages(c("remotes", "googledrive")) remotes::install_github("r-spatial/rgee")

library(rgee)

Get the username

HOME <- Sys.getenv("HOME")

1. Install miniconda

reticulate::install_miniconda()

2. Install Google Cloud SDK

system("curl -sSL https://sdk.cloud.google.com | bash")

3 Set global parameters

Sys.setenv("RETICULATEPYTHON" = sprintf("%s/.local/share/r-miniconda/bin/python3", HOME)) Sys.setenv("EARTHENGINEGCLOUD" = sprintf("%s/google-cloud-sdk/bin/", HOME))

4 Install rgee Python dependencies

ee_install()

5. Authenticate and initialize your Earth Engine session

Replace "my-project-id" with the ID of the Cloud project you created above

ee_Initialize(project = "my-project-id") ```

There are three (3) different ways to install rgee Python dependencies:

  1. Use ee_install (Highly recommended for users with no experience with Python environments)

r rgee::ee_install()

  1. Use eeinstallset_pyenv (Recommended for users with experience in Python environments)

r rgee::ee_install_set_pyenv( py_path = "/home/csaybar/.virtualenvs/rgee/bin/python", # Change it for your own Python PATH py_env = "rgee" # Change it for your own Python ENV )

Take into account that the Python PATH you set must have earthengine-api and `numpy installed. The use of miniconda/anaconda is mandatory for Windows users, Linux and MacOS users could also use virtualenv. See reticulate documentation for more details.

If you are using MacOS or Linux, you can choose setting the Python PATH directly:

r rgee::ee_install_set_pyenv( py_path = "/usr/bin/python3", py_env = NULL )

However, rgee::eeinstallupgrade and reticulate::py_install will not work until you have set up a Python ENV.

  1. Use the Python PATH setting support that offer Rstudio v.1.4 >. See this tutorial.

After install Python dependencies, you might want to use the function below for checking the rgee status.

r ee_check() # Check non-R dependencies

Sync rgee with other Python packages

Integrate rgee with geemap.

``` r library(reticulate) library(rgee)

1. Initialize the Python Environment

ee_Initialize(project = "my-project-id")

2. Install geemap in the same Python ENV that use rgee

py_install("geemap") gm <- import("geemap") ```

Upgrade the earthengine-api

r library(rgee) ee_Initialize(project = "my-project-id") ee_install_upgrade()

Package Conventions

  • All rgee functions have the prefix ee_. Auto-completion is your best ally :).
  • Full access to the Earth Engine API with the prefix ee\$....
  • Authenticate and Initialize the Earth Engine R API with ee_Initialize. It is necessary once per session!.
  • rgee is "pipe-friendly"; we re-export %>% but do not require to use it.

Hello World

1. Compute the trend of night-time lights (JS version)

Authenticate and Initialize the Earth Engine R API.

r library(rgee) ee_Initialize(project = "my-project-id")

Let's create a new band containing the image date as years since 1991 by extracting the year of the image acquisition date and subtracting it from 1991.

r createTimeBand <-function(img) { year <- ee$Date(img$get('system:time_start'))$get('year')$subtract(1991L) ee$Image(year)$byte()$addBands(img) }

Use your TimeBand function to map it over the night-time lights collection.

r collection <- ee$ ImageCollection('NOAA/DMSP-OLS/NIGHTTIME_LIGHTS')$ select('stable_lights')$ map(createTimeBand)

Compute a linear fit over the series of values at each pixel, so that you can visualize the y-intercept as green, and the positive/negative slopes as red/blue.

r col_reduce <- collection$reduce(ee$Reducer$linearFit()) col_reduce <- col_reduce$addBands( col_reduce$select('scale')) ee_print(col_reduce)

Let's visualize our map!

r Map$setCenter(9.08203, 47.39835, 3) Map$addLayer( eeObject = col_reduce, visParams = list( bands = c("scale", "offset", "scale"), min = 0, max = c(0.18, 20, -0.18) ), name = "stable lights trend" )

rgee_01

2. Let's play with some precipitation values

Install and load tidyverse and sf R packages, and initialize the Earth Engine R API.

``` r library(tidyverse) library(rgee) library(sf)

ee_Initialize(project = "my-project-id") ```

Read the nc shapefile.

r nc <- st_read(system.file("shape/nc.shp", package = "sf"), quiet = TRUE)

We will use the Terraclimate dataset to extract the monthly precipitation (Pr) from 2001

r terraclimate <- ee$ImageCollection("IDAHO_EPSCOR/TERRACLIMATE") %>% ee$ImageCollection$filterDate("2001-01-01", "2002-01-01") %>% ee$ImageCollection$map(function(x) x$select("pr")) %>% # Select only precipitation bands ee$ImageCollection$toBands() %>% # from imagecollection to image ee$Image$rename(sprintf("PP_%02d",1:12)) # rename the bands of an image

ee_extract will help you to extract monthly precipitation values from the Terraclimate ImageCollection. ee_extract works similar to raster::extract, you just need to define: the ImageCollection object (x), the geometry (y), and a function to summarize the values (fun).

r ee_nc_rain <- ee_extract(x = terraclimate, y = nc["NAME"], sf = FALSE)

Use ggplot2 to generate a beautiful static plot!

r ee_nc_rain %>% pivot_longer(-NAME, names_to = "month", values_to = "pr") %>% mutate(month, month=gsub("PP_", "", month)) %>% ggplot(aes(x = month, y = pr, group = NAME, color = pr)) + geom_line(alpha = 0.4) + xlab("Month") + ylab("Precipitation (mm)") + theme_minimal()

### 3. Create an NDVI-animation (JS version)

Install and load sf. after that, initialize the Earth Engine R API.

``` r library(magick) library(rgee) library(sf)

ee_Initialize(project = "my-project-id") ```

Define the regional bounds of animation frames and a mask to clip the NDVI data by.

r mask <- system.file("shp/arequipa.shp", package = "rgee") %>% st_read(quiet = TRUE) %>% sf_as_ee() region <- mask$geometry()$bounds()

Retrieve the MODIS Terra Vegetation Indices 16-Day Global 1km dataset as an ee.ImageCollection and then, select the NDVI band.

r col <- ee$ImageCollection('MODIS/006/MOD13A2')$select('NDVI')

Group images by composite date

r col <- col$map(function(img) { doy <- ee$Date(img$get('system:time_start'))$getRelative('day', 'year') img$set('doy', doy) }) distinctDOY <- col$filterDate('2013-01-01', '2014-01-01')

Now, let's define a filter that identifies which images from the complete collection match the DOY from the distinct DOY collection.

r filter <- ee$Filter$equals(leftField = 'doy', rightField = 'doy')

Define a join and convert the resulting FeatureCollection to an ImageCollection... it will take you only 2 lines of code!

r join <- ee$Join$saveAll('doy_matches') joinCol <- ee$ImageCollection(join$apply(distinctDOY, col, filter))

Apply median reduction among the matching DOY collections.

r comp <- joinCol$map(function(img) { doyCol = ee$ImageCollection$fromImages( img$get('doy_matches') ) doyCol$reduce(ee$Reducer$median()) })

Almost ready! but let's define RGB visualization parameters first.

r visParams = list( min = 0.0, max = 9000.0, bands = "NDVI_median", palette = c( 'FFFFFF', 'CE7E45', 'DF923D', 'F1B555', 'FCD163', '99B718', '74A901', '66A000', '529400', '3E8601', '207401', '056201', '004C00', '023B01', '012E01', '011D01', '011301' ) )

Create RGB visualization images for use as animation frames.

r rgbVis <- comp$map(function(img) { do.call(img$visualize, visParams) %>% ee$Image$clip(mask) })

Let's animate this. Define GIF visualization parameters.

r gifParams <- list( region = region, dimensions = 600, crs = 'EPSG:3857', framesPerSecond = 10 )

Get month names

r dates_modis_mabbr <- distinctDOY %>% ee_get_date_ic %>% # Get Image Collection dates '[['("time_start") %>% # Select time_start column lubridate::month() %>% # Get the month component of the datetime '['(month.abb, .) # subset around month abbreviations

And finally, use eeutilsgif_* functions to render the GIF animation and add some texts.

``` r animation <- eeutilsgifcreator(rgbVis, gifParams, mode = "wb") animation %>% eeutilsgifannotate( text = "NDVI: MODIS/006/MOD13A2", size = 15, color = "white", location = "+10+10" ) %>% eeutilsgifannotate( text = datesmodismabbr, size = 30, location = "+290+350", color = "white", font = "arial", boxcolor = "#000000" ) # -> animationwtxt

eeutilsgifsave(animationwtxt, path = "rasterasee.gif")

```

## How does rgee work?

rgee is not a native Earth Engine API like the Javascript or Python client. Developing an Earth Engine API from scratch would create too much maintenance burden, especially considering that the API is in active development. So, how is it possible to run Earth Engine using R? the answer is [reticulate]! (https://rstudio.github.io/reticulate/). reticulate is an R package designed to allow seamless interoperability between R and Python. When an Earth Engine request is created in R, reticulate will translate this request into Python and pass it to the Earth Engine Python API, which converts the request to a JSON format. Finally, the request is received by the GEE Platform through a Web REST API. The response will follow the same path in reverse.

workflow

Code of Conduct

Please note that the rgee project is released with a Contributor Code of Conduct. By contributing to this project, you agree to abide by its terms.

Contributing Guide

👍 Thanks for taking the time to contribute! 🎉👍 Please review our Contributing Guide.

Share the love

Enjoying rgee? Let others know about it! Share it on Twitter, LinkedIN or in a blog post to spread the word.

Using rgee for your scientific article? here's how you can cite it

``` r citation("rgee") To cite rgee in publications use:

C Aybar, Q Wu, L Bautista, R Yali and A Barja (2020) rgee: An R package for interacting with Google Earth Engine Journal of Open Source Software URL https://github.com/r-spatial/rgee/.

A BibTeX entry for LaTeX users is

@Article{, title = {rgee: An R package for interacting with Google Earth Engine}, author = {Cesar Aybar and Quisheng Wu and Lesly Bautista and Roy Yali and Antony Barja}, journal = {Journal of Open Source Software}, year = {2020}, } ```

Credits

We want to offer a special thanks :raised_hands: :clap: to Justin Braaten for his wise and helpful comments in the whole development of rgee. As well, we would like to mention the following third-party R/Python packages for contributing indirectly to the improvement of rgee:

Owner

  • Name: r-spatial
  • Login: r-spatial
  • Kind: organization

For packages raster, terra, dismo & geosphere visit the rspatial github organisation (mind the missing '-')

JOSS Publication

rgee: An R package for interacting with Google Earth Engine
Published
July 16, 2020
Volume 5, Issue 51, Page 2272
Authors
Cesar Aybar ORCID
Department of Geoinformatics – Z_GIS, University of Salzburg, Austria
Qiusheng Wu ORCID
Department of Geography, University of Tennessee, Knoxville, TN 37996, USA
Lesly Bautista ORCID
Universidad Nacional Mayor de San Marcos, Lima, Lima 15081, Peru
Roy Yali ORCID
Universidad Nacional Mayor de San Marcos, Lima, Lima 15081, Peru
Antony Barja ORCID
Universidad Nacional Mayor de San Marcos, Lima, Lima 15081, Peru
Editor
Hugo Ledoux ORCID
Tags
Earth Engine Earth Observation spatial analysis

Citation (CITATION.cff)

# --------------------------------------------
# CITATION file created with {cffr} R package
# See also: https://docs.ropensci.org/cffr/
# --------------------------------------------
 
cff-version: 1.2.0
message: 'To cite package "rgee" in publications use:'
type: software
license: Apache-2.0
title: 'rgee: R Bindings for Calling the ''Earth Engine'' API'
version: 1.1.7.000009
doi: 10.32614/CRAN.package.rgee
identifiers:
- type: url
  value: https://r-spatial.github.io/rgee/
- type: url
  value: https://github.com/google/earthengine-api/
abstract: Earth Engine <https://earthengine.google.com/> client library for R. All
  of the 'Earth Engine' API classes, modules, and functions are made available. Additional
  functions implemented include importing (exporting) of Earth Engine spatial objects,
  extraction of time series, interactive map display, assets management interface,
  and metadata display. See <https://r-spatial.github.io/rgee/> for further details.
authors:
- family-names: Aybar
  given-names: Cesar
  email: csaybar@gmail.com
  orcid: https://orcid.org/0000-0003-2745-9535
repository: https://CRAN.R-project.org/package=rgee
repository-code: https://github.com/r-spatial/rgee/issues/
url: https://github.com/r-spatial/rgee/
contact:
- family-names: Aybar
  given-names: Cesar
  email: csaybar@gmail.com
  orcid: https://orcid.org/0000-0003-2745-9535
references:
- type: software
  title: 'R: A Language and Environment for Statistical Computing'
  notes: Depends
  url: https://www.R-project.org/
  authors:
  - name: R Core Team
  institution:
    name: R Foundation for Statistical Computing
    address: Vienna, Austria
  year: '2025'
  version: '>= 3.3.0'
- type: software
  title: methods
  abstract: 'R: A Language and Environment for Statistical Computing'
  notes: Imports
  authors:
  - name: R Core Team
  institution:
    name: R Foundation for Statistical Computing
    address: Vienna, Austria
  year: '2025'
- type: software
  title: reticulate
  abstract: 'reticulate: Interface to ''Python'''
  notes: Imports
  url: https://rstudio.github.io/reticulate/
  repository: https://CRAN.R-project.org/package=reticulate
  authors:
  - family-names: Ushey
    given-names: Kevin
    email: kevin@posit.co
  - family-names: Allaire
    given-names: JJ
    email: jj@posit.co
  - family-names: Tang
    given-names: Yuan
    email: terrytangyuan@gmail.com
    orcid: https://orcid.org/0000-0001-5243-233X
  year: '2025'
  doi: 10.32614/CRAN.package.reticulate
  version: '>= 1.27'
- type: software
  title: rstudioapi
  abstract: 'rstudioapi: Safely Access the RStudio API'
  notes: Imports
  url: https://rstudio.github.io/rstudioapi/
  repository: https://CRAN.R-project.org/package=rstudioapi
  authors:
  - family-names: Ushey
    given-names: Kevin
    email: kevin@rstudio.com
  - family-names: Allaire
    given-names: JJ
    email: jj@posit.co
  - family-names: Wickham
    given-names: Hadley
    email: hadley@posit.co
  - family-names: Ritchie
    given-names: Gary
    email: gary@posit.co
  year: '2025'
  doi: 10.32614/CRAN.package.rstudioapi
  version: '>= 0.7'
- type: software
  title: leaflet
  abstract: 'leaflet: Create Interactive Web Maps with the JavaScript ''Leaflet''
    Library'
  notes: Imports
  url: https://rstudio.github.io/leaflet/
  repository: https://CRAN.R-project.org/package=leaflet
  authors:
  - family-names: Cheng
    given-names: Joe
    email: joe@posit.co
  - family-names: Schloerke
    given-names: Barret
    email: barret@posit.co
    orcid: https://orcid.org/0000-0001-9986-114X
  - family-names: Karambelkar
    given-names: Bhaskar
  - family-names: Xie
    given-names: Yihui
  year: '2025'
  doi: 10.32614/CRAN.package.leaflet
  version: '>= 2.0.2'
- type: software
  title: magrittr
  abstract: 'magrittr: A Forward-Pipe Operator for R'
  notes: Imports
  url: https://magrittr.tidyverse.org
  repository: https://CRAN.R-project.org/package=magrittr
  authors:
  - family-names: Bache
    given-names: Stefan Milton
    email: stefan@stefanbache.dk
  - family-names: Wickham
    given-names: Hadley
    email: hadley@rstudio.com
  year: '2025'
  doi: 10.32614/CRAN.package.magrittr
- type: software
  title: jsonlite
  abstract: 'jsonlite: A Simple and Robust JSON Parser and Generator for R'
  notes: Imports
  url: https://jeroen.r-universe.dev/jsonlite
  repository: https://CRAN.R-project.org/package=jsonlite
  authors:
  - family-names: Ooms
    given-names: Jeroen
    email: jeroenooms@gmail.com
    orcid: https://orcid.org/0000-0002-4035-0289
  year: '2025'
  doi: 10.32614/CRAN.package.jsonlite
- type: software
  title: processx
  abstract: 'processx: Execute and Control System Processes'
  notes: Imports
  url: https://processx.r-lib.org
  repository: https://CRAN.R-project.org/package=processx
  authors:
  - family-names: Csárdi
    given-names: Gábor
    email: csardi.gabor@gmail.com
    orcid: https://orcid.org/0000-0001-7098-9676
  - family-names: Chang
    given-names: Winston
  year: '2025'
  doi: 10.32614/CRAN.package.processx
- type: software
  title: leafem
  abstract: 'leafem: ''leaflet'' Extensions for ''mapview'''
  notes: Imports
  url: https://r-spatial.github.io/leafem/
  repository: https://CRAN.R-project.org/package=leafem
  authors:
  - family-names: Appelhans
    given-names: Tim
    email: tim.appelhans@gmail.com
  year: '2025'
  doi: 10.32614/CRAN.package.leafem
- type: software
  title: crayon
  abstract: 'crayon: Colored Terminal Output'
  notes: Imports
  url: https://r-lib.github.io/crayon/
  repository: https://CRAN.R-project.org/package=crayon
  authors:
  - family-names: Csárdi
    given-names: Gábor
    email: csardi.gabor@gmail.com
  year: '2025'
  doi: 10.32614/CRAN.package.crayon
- type: software
  title: R6
  abstract: 'R6: Encapsulated Classes with Reference Semantics'
  notes: Imports
  url: https://r6.r-lib.org
  repository: https://CRAN.R-project.org/package=R6
  authors:
  - family-names: Chang
    given-names: Winston
    email: winston@posit.co
  year: '2025'
  doi: 10.32614/CRAN.package.R6
- type: software
  title: cli
  abstract: 'cli: Helpers for Developing Command Line Interfaces'
  notes: Imports
  url: https://cli.r-lib.org
  repository: https://CRAN.R-project.org/package=cli
  authors:
  - family-names: Csárdi
    given-names: Gábor
    email: gabor@posit.co
  year: '2025'
  doi: 10.32614/CRAN.package.cli
- type: software
  title: magick
  abstract: 'magick: Advanced Graphics and Image-Processing in R'
  notes: Suggests
  url: https://docs.ropensci.org/magick/
  repository: https://CRAN.R-project.org/package=magick
  authors:
  - family-names: Ooms
    given-names: Jeroen
    email: jeroenooms@gmail.com
    orcid: https://orcid.org/0000-0002-4035-0289
  year: '2025'
  doi: 10.32614/CRAN.package.magick
- type: software
  title: geojsonio
  abstract: 'geojsonio: Convert Data from and to ''GeoJSON'' or ''TopoJSON'''
  notes: Suggests
  url: https://docs.ropensci.org/geojsonio/
  repository: https://CRAN.R-project.org/package=geojsonio
  authors:
  - family-names: Chamberlain
    given-names: Scott
    email: myrmecocystus@gmail.com
  - family-names: Teucher
    given-names: Andy
    email: andy.teucher@gmail.com
  - family-names: Mahoney
    given-names: Michael
    email: mike.mahoney.218@gmail.com
    orcid: https://orcid.org/0000-0003-2402-304X
  year: '2025'
  doi: 10.32614/CRAN.package.geojsonio
- type: software
  title: sf
  abstract: 'sf: Simple Features for R'
  notes: Suggests
  url: https://r-spatial.github.io/sf/
  repository: https://CRAN.R-project.org/package=sf
  authors:
  - family-names: Pebesma
    given-names: Edzer
    email: edzer.pebesma@uni-muenster.de
    orcid: https://orcid.org/0000-0001-8049-7069
  year: '2025'
  doi: 10.32614/CRAN.package.sf
- type: software
  title: stars
  abstract: 'stars: Spatiotemporal Arrays, Raster and Vector Data Cubes'
  notes: Suggests
  url: https://r-spatial.github.io/stars/
  repository: https://CRAN.R-project.org/package=stars
  authors:
  - family-names: Pebesma
    given-names: Edzer
    email: edzer.pebesma@uni-muenster.de
    orcid: https://orcid.org/0000-0001-8049-7069
  year: '2025'
  doi: 10.32614/CRAN.package.stars
- type: software
  title: googledrive
  abstract: 'googledrive: An Interface to Google Drive'
  notes: Suggests
  url: https://googledrive.tidyverse.org
  repository: https://CRAN.R-project.org/package=googledrive
  authors:
  - family-names: D'Agostino McGowan
    given-names: Lucy
  - family-names: Bryan
    given-names: Jennifer
    email: jenny@posit.co
    orcid: https://orcid.org/0000-0002-6983-2759
  year: '2025'
  doi: 10.32614/CRAN.package.googledrive
  version: '>= 2.0.0'
- type: software
  title: gargle
  abstract: 'gargle: Utilities for Working with Google APIs'
  notes: Suggests
  url: https://gargle.r-lib.org
  repository: https://CRAN.R-project.org/package=gargle
  authors:
  - family-names: Bryan
    given-names: Jennifer
    email: jenny@posit.co
    orcid: https://orcid.org/0000-0002-6983-2759
  - family-names: Citro
    given-names: Craig
    email: craigcitro@google.com
  - family-names: Wickham
    given-names: Hadley
    email: hadley@posit.co
    orcid: https://orcid.org/0000-0003-4757-117X
  year: '2025'
  doi: 10.32614/CRAN.package.gargle
- type: software
  title: httr
  abstract: 'httr: Tools for Working with URLs and HTTP'
  notes: Suggests
  url: https://httr.r-lib.org/
  repository: https://CRAN.R-project.org/package=httr
  authors:
  - family-names: Wickham
    given-names: Hadley
    email: hadley@posit.co
  year: '2025'
  doi: 10.32614/CRAN.package.httr
- type: software
  title: digest
  abstract: 'digest: Create Compact Hash Digests of R Objects'
  notes: Suggests
  url: https://dirk.eddelbuettel.com/code/digest.html
  repository: https://CRAN.R-project.org/package=digest
  authors:
  - family-names: Eddelbuettel
    given-names: Dirk
    email: edd@debian.org
    orcid: https://orcid.org/0000-0001-6419-907X
  year: '2025'
  doi: 10.32614/CRAN.package.digest
- type: software
  title: testthat
  abstract: 'testthat: Unit Testing for R'
  notes: Suggests
  url: https://testthat.r-lib.org
  repository: https://CRAN.R-project.org/package=testthat
  authors:
  - family-names: Wickham
    given-names: Hadley
    email: hadley@posit.co
  year: '2025'
  doi: 10.32614/CRAN.package.testthat
- type: software
  title: future
  abstract: 'future: Unified Parallel and Distributed Processing in R for Everyone'
  notes: Suggests
  url: https://future.futureverse.org
  repository: https://CRAN.R-project.org/package=future
  authors:
  - family-names: Bengtsson
    given-names: Henrik
    email: henrikb@braju.com
    orcid: https://orcid.org/0000-0002-7579-5165
  year: '2025'
  doi: 10.32614/CRAN.package.future
- type: software
  title: terra
  abstract: 'terra: Spatial Data Analysis'
  notes: Suggests
  url: https://rspatial.org/
  repository: https://CRAN.R-project.org/package=terra
  authors:
  - family-names: Hijmans
    given-names: Robert J.
    email: r.hijmans@gmail.com
    orcid: https://orcid.org/0000-0001-5872-2872
  year: '2025'
  doi: 10.32614/CRAN.package.terra
- type: software
  title: covr
  abstract: 'covr: Test Coverage for Packages'
  notes: Suggests
  url: https://covr.r-lib.org
  repository: https://CRAN.R-project.org/package=covr
  authors:
  - family-names: Hester
    given-names: Jim
    email: james.f.hester@gmail.com
  year: '2025'
  doi: 10.32614/CRAN.package.covr
- type: software
  title: knitr
  abstract: 'knitr: A General-Purpose Package for Dynamic Report Generation in R'
  notes: Suggests
  url: https://yihui.org/knitr/
  repository: https://CRAN.R-project.org/package=knitr
  authors:
  - family-names: Xie
    given-names: Yihui
    email: xie@yihui.name
    orcid: https://orcid.org/0000-0003-0645-5666
  year: '2025'
  doi: 10.32614/CRAN.package.knitr
- type: software
  title: rmarkdown
  abstract: 'rmarkdown: Dynamic Documents for R'
  notes: Suggests
  url: https://pkgs.rstudio.com/rmarkdown/
  repository: https://CRAN.R-project.org/package=rmarkdown
  authors:
  - family-names: Allaire
    given-names: JJ
    email: jj@posit.co
  - family-names: Xie
    given-names: Yihui
    email: xie@yihui.name
    orcid: https://orcid.org/0000-0003-0645-5666
  - family-names: Dervieux
    given-names: Christophe
    email: cderv@posit.co
    orcid: https://orcid.org/0000-0003-4474-2498
  - family-names: McPherson
    given-names: Jonathan
    email: jonathan@posit.co
  - family-names: Luraschi
    given-names: Javier
  - family-names: Ushey
    given-names: Kevin
    email: kevin@posit.co
  - family-names: Atkins
    given-names: Aron
    email: aron@posit.co
  - family-names: Wickham
    given-names: Hadley
    email: hadley@posit.co
  - family-names: Cheng
    given-names: Joe
    email: joe@posit.co
  - family-names: Chang
    given-names: Winston
    email: winston@posit.co
  - family-names: Iannone
    given-names: Richard
    email: rich@posit.co
    orcid: https://orcid.org/0000-0003-3925-190X
  year: '2025'
  doi: 10.32614/CRAN.package.rmarkdown
- type: software
  title: png
  abstract: 'png: Read and write PNG images'
  notes: Suggests
  url: http://www.rforge.net/png/
  repository: https://CRAN.R-project.org/package=png
  authors:
  - family-names: Urbanek
    given-names: Simon
    email: Simon.Urbanek@r-project.org
  year: '2025'
  doi: 10.32614/CRAN.package.png
- type: software
  title: googleCloudStorageR
  abstract: 'googleCloudStorageR: Interface with Google Cloud Storage API'
  notes: Suggests
  url: https://code.markedmondson.me/googleCloudStorageR/
  repository: https://CRAN.R-project.org/package=googleCloudStorageR
  authors:
  - family-names: Edmondson
    given-names: Mark
    email: r@sunholo.com
    orcid: https://orcid.org/0000-0002-8434-3881
  year: '2025'
  doi: 10.32614/CRAN.package.googleCloudStorageR
- type: software
  title: leaflet.extras2
  abstract: 'leaflet.extras2: Extra Functionality for ''leaflet'' Package'
  notes: Suggests
  url: https://trafficonese.github.io/leaflet.extras2/
  repository: https://CRAN.R-project.org/package=leaflet.extras2
  authors:
  - family-names: Sebastian
    given-names: Gatscha
    email: sebastian_gatscha@gmx.at
  year: '2025'
  doi: 10.32614/CRAN.package.leaflet.extras2
- type: software
  title: spelling
  abstract: 'spelling: Tools for Spell Checking in R'
  notes: Suggests
  url: https://ropensci.r-universe.dev/spelling
  repository: https://CRAN.R-project.org/package=spelling
  authors:
  - family-names: Ooms
    given-names: Jeroen
    email: jeroenooms@gmail.com
    orcid: https://orcid.org/0000-0002-4035-0289
  - family-names: Hester
    given-names: Jim
    email: james.hester@rstudio.com
  year: '2025'
  doi: 10.32614/CRAN.package.spelling
- type: software
  title: raster
  abstract: 'raster: Geographic Data Analysis and Modeling'
  notes: Suggests
  url: https://rspatial.org/raster
  repository: https://CRAN.R-project.org/package=raster
  authors:
  - family-names: Hijmans
    given-names: Robert J.
    email: r.hijmans@gmail.com
    orcid: https://orcid.org/0000-0001-5872-2872
  year: '2025'
  doi: 10.32614/CRAN.package.raster

GitHub Events

Total
  • Issues event: 18
  • Watch event: 55
  • Issue comment event: 36
  • Push event: 113
  • Pull request review event: 4
  • Pull request review comment event: 4
  • Pull request event: 11
  • Fork event: 9
  • Create event: 1
Last Year
  • Issues event: 18
  • Watch event: 55
  • Issue comment event: 36
  • Push event: 113
  • Pull request review event: 4
  • Pull request review comment event: 4
  • Pull request event: 11
  • Fork event: 9
  • Create event: 1

Committers

Last synced: 4 months ago

All Time
  • Total Commits: 1,275
  • Total Committers: 22
  • Avg Commits per committer: 57.955
  • Development Distribution Score (DDS): 0.433
Past Year
  • Commits: 131
  • Committers: 5
  • Avg Commits per committer: 26.2
  • Development Distribution Score (DDS): 0.092
Top Committers
Name Email Commits
Cesar Luis Aybar Camacho a****4@g****m 723
GitHub Action a****n@g****m 438
Antony Barja a****8@g****m 28
Roy Yali Samaniego r****3@g****m 17
Matthieu Stigler M****r@g****m 15
valeriallactayo v****o@u****e 14
gcarrascoe g****1@g****m 12
Jacob B. Socolar j****r@g****m 12
Marouf Shaikh m****8@g****m 2
Justin Braaten j****e 2
Daniel Bonnéry d****y@g****m 1
Hugo Ledoux h****x@t****l 1
Keisuke ANDO a****o@m****p 1
LBautistaB13 5****3 1
Martin Holdrege m****e@g****m 1
Nils r****a@z****h 1
Paul Frater p****r@g****m 1
runner r****r@M****l 1
runner r****r@M****l 1
runner r****r@M****l 1
runner r****r@M****l 1
egbendito e****o@g****m 1
Committer Domains (Top 20 + Academic)

Issues and Pull Requests

Last synced: 4 months ago

All Time
  • Total issues: 147
  • Total pull requests: 25
  • Average time to close issues: 3 months
  • Average time to close pull requests: about 2 months
  • Total issue authors: 102
  • Total pull request authors: 11
  • Average comments per issue: 2.76
  • Average comments per pull request: 0.84
  • Merged pull requests: 18
  • Bot issues: 0
  • Bot pull requests: 0
Past Year
  • Issues: 19
  • Pull requests: 11
  • Average time to close issues: 11 days
  • Average time to close pull requests: 14 days
  • Issue authors: 14
  • Pull request authors: 4
  • Average comments per issue: 0.16
  • Average comments per pull request: 0.18
  • Merged pull requests: 8
  • Bot issues: 0
  • Bot pull requests: 0
Top Authors
Issue Authors
  • MatthieuStigler (9)
  • TianyaImpression (8)
  • zackarno (6)
  • Leprechault (5)
  • fBedecarrats (4)
  • wilson733 (4)
  • rokoeh (3)
  • ambarja (2)
  • POTCHARAARIYA (2)
  • MelanieDickie (2)
  • jimoreira (2)
  • SvenVw (2)
  • aloboa (2)
  • latot (2)
  • mcket747econ (2)
Pull Request Authors
  • MatthieuStigler (7)
  • ambarja (4)
  • valeriallactayo (3)
  • NONONOexe (2)
  • MarShaikh (2)
  • jdbcode (2)
  • fpirotti (1)
  • bbest (1)
  • csaybar (1)
  • bmaitner (1)
  • pfrater (1)
Top Labels
Issue Labels
question (13) bug (12) priority (5) enhancement (3) good first issue (3) rgeeExtra feature (2) help wanted (2) documentation (1)
Pull Request Labels

Packages

  • Total packages: 2
  • Total downloads:
    • cran 1,688 last-month
  • Total docker downloads: 21,622
  • Total dependent packages: 3
    (may contain duplicates)
  • Total dependent repositories: 13
    (may contain duplicates)
  • Total versions: 13
  • Total maintainers: 1
cran.r-project.org: rgee

R Bindings for Calling the 'Earth Engine' API

  • Versions: 8
  • Dependent Packages: 3
  • Dependent Repositories: 13
  • Downloads: 1,688 Last month
  • Docker Downloads: 21,622
Rankings
Forks count: 0.4%
Stargazers count: 0.6%
Docker downloads count: 6.4%
Average: 6.7%
Dependent repos count: 8.1%
Downloads: 11.5%
Dependent packages count: 13.3%
Maintainers (1)
Last synced: 4 months ago
conda-forge.org: r-rgee
  • Versions: 5
  • Dependent Packages: 0
  • Dependent Repositories: 0
Rankings
Forks count: 14.5%
Stargazers count: 16.2%
Average: 29.0%
Dependent repos count: 34.0%
Dependent packages count: 51.2%
Last synced: 4 months ago

Dependencies

.github/workflows/pkgdown.yaml actions
  • actions/cache v1 composite
  • actions/checkout v2 composite
  • r-lib/actions/setup-pandoc master composite
  • r-lib/actions/setup-r master composite
.github/workflows/update-citation-cff.yaml actions
  • actions/checkout v2 composite
  • r-lib/actions/setup-r v2 composite
  • r-lib/actions/setup-r-dependencies v2 composite
.github/workflows/updated_earthengine_api.yaml actions
  • actions/checkout v2 composite
  • actions/setup-python v2 composite
  • ad-m/github-push-action v0.6.0 composite
DESCRIPTION cran
  • R >= 3.3.0 depends
  • R6 * imports
  • cli * imports
  • crayon * imports
  • jsonlite * imports
  • leafem * imports
  • leaflet >= 2.0.2 imports
  • magrittr * imports
  • methods * imports
  • processx * imports
  • reticulate >= 1.24 imports
  • rstudioapi >= 0.7 imports
  • covr * suggests
  • digest * suggests
  • future * suggests
  • gargle * suggests
  • geojsonio * suggests
  • googleCloudStorageR >= 0.6.0 suggests
  • googledrive >= 2.0.0 suggests
  • httr * suggests
  • knitr * suggests
  • leaflet.extras2 * suggests
  • magick * suggests
  • png * suggests
  • raster * suggests
  • rgdal * suggests
  • rmarkdown * suggests
  • sf * suggests
  • spelling * suggests
  • stars * suggests
  • testthat * suggests