ArviZ a unified library for exploratory analysis of Bayesian models in Python

ArviZ a unified library for exploratory analysis of Bayesian models in Python - Published in JOSS (2019)

https://github.com/arviz-devs/arviz

Science Score: 100.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
    Found CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
    Found 13 DOI reference(s) in README and JOSS metadata
  • Academic publication links
    Links to: joss.theoj.org, zenodo.org
  • Committers with academic emails
    7 of 177 committers (4.0%) from academic institutions
  • Institutional organization owner
  • JOSS paper metadata
    Published in Journal of Open Source Software

Keywords

bayesian closember python

Keywords from Contributors

bayesian-statistics bayesian-data-analysis prior-distribution prior-elicitation probability-distribution bayesian-inference estimator model-selection visualizer jax

Scientific Fields

Mathematics Computer Science - 84% confidence
Earth and Environmental Sciences Physical Sciences - 64% confidence
Last synced: 4 months ago · JSON representation ·

Repository

Exploratory analysis of Bayesian models with Python

Basic Info
  • Host: GitHub
  • Owner: arviz-devs
  • License: apache-2.0
  • Language: Python
  • Default Branch: main
  • Homepage: https://python.arviz.org
  • Size: 123 MB
Statistics
  • Stars: 1,716
  • Watchers: 50
  • Forks: 449
  • Open Issues: 178
  • Releases: 40
Topics
bayesian closember python
Created over 10 years ago · Last pushed 4 months ago
Metadata Files
Readme Changelog Contributing Funding License Code of conduct Citation Governance

README.md

PyPI version Azure Build Status codecov Code style: black Gitter chat DOI DOI Powered by NumFOCUS

ArviZ (pronounced "AR-vees") is a Python package for exploratory analysis of Bayesian models. It includes functions for posterior analysis, data storage, model checking, comparison and diagnostics.

ArviZ in other languages

ArviZ also has a Julia wrapper available ArviZ.jl.

Documentation

The ArviZ documentation can be found in the official docs. First time users may find the quickstart to be helpful. Additional guidance can be found in the user guide.

Installation

Stable

ArviZ is available for installation from PyPI. The latest stable version can be installed using pip:

pip install arviz

ArviZ is also available through conda-forge.

conda install -c conda-forge arviz

Development

The latest development version can be installed from the main branch using pip:

pip install git+git://github.com/arviz-devs/arviz.git

Another option is to clone the repository and install using git and setuptools:

git clone https://github.com/arviz-devs/arviz.git cd arviz python setup.py install


Gallery

Ridge plot Forest Plot Violin Plot
Posterior predictive plot Joint plot Posterior plot
Density plot Pair plot Hexbin Pair plot
Trace plot Energy Plot Rank Plot

And more...

Dependencies

ArviZ is tested on Python 3.10, 3.11 and 3.12, and depends on NumPy, SciPy, xarray, and Matplotlib.

Citation

If you use ArviZ and want to cite it please use DOI

Here is the citation in BibTeX format

@article{arviz_2019, doi = {10.21105/joss.01143}, url = {https://doi.org/10.21105/joss.01143}, year = {2019}, publisher = {The Open Journal}, volume = {4}, number = {33}, pages = {1143}, author = {Ravin Kumar and Colin Carroll and Ari Hartikainen and Osvaldo Martin}, title = {ArviZ a unified library for exploratory analysis of Bayesian models in Python}, journal = {Journal of Open Source Software} }

Contributions

ArviZ is a community project and welcomes contributions. Additional information can be found in the Contributing Readme

Code of Conduct

ArviZ wishes to maintain a positive community. Additional details can be found in the Code of Conduct

Donations

ArviZ is a non-profit project under NumFOCUS umbrella. If you want to support ArviZ financially, you can donate here.

Sponsors

NumFOCUS

Owner

  • Name: ArviZ
  • Login: arviz-devs
  • Kind: organization

JOSS Publication

ArviZ a unified library for exploratory analysis of Bayesian models in Python
Published
January 15, 2019
Volume 4, Issue 33, Page 1143
Authors
Ravin Kumar ORCID
Carbon IT LLC, United States
Colin Carroll ORCID
Freebird Inc., United States
Ari Hartikainen ORCID
Aalto University, Department of Civil Engineering, Espoo, Finland
Osvaldo Martin ORCID
Instituto de Matemática Aplicada San Luis, UNSL-CONICET. Ejército de los Andes 950, 5700 San Luis, Argentina
Editor
Arfon Smith ORCID
Tags
Bayesian statistics Visualization Probabilistic programming

Citation (CITATION.cff)

cff-version: 1.2.0
message: "If you use this software, please cite it as below."
title: "ArviZ"
url: "https://github.com/arviz-devs/arviz"
preferred-citation:
  type: article
  authors:
    -
      family-names: Kumar
      given-names: Ravin
      orcid: "https://orcid.org/0000-0003-0501-6098"
    -
      family-names: Carroll
      given-names: Colin
      orcid: "https://orcid.org/0000-0001-6977-0861"
    -
      family-names: Hartikainen
      given-names: Ari
      orcid: "https://orcid.org/0000-0002-4569-569X"
    -
      family-names: Osvaldo
      given-names: Martin
      orcid: "https://orcid.org/0000-0001-7419-8978"
  doi: "10.21105/joss.01143"
  journal: "Journal of Open Source Software"
  title: "ArviZ a unified library for exploratory analysis of Bayesian models in Python"

Papers & Mentions

Total mentions: 1

A Bayesian approach to extracting free-energy profiles from cryo-electron microscopy experiments
Last synced: 2 months ago

GitHub Events

Total
  • Create event: 6
  • Release event: 2
  • Issues event: 45
  • Watch event: 115
  • Delete event: 5
  • Issue comment event: 163
  • Push event: 43
  • Gollum event: 11
  • Pull request review comment event: 21
  • Pull request review event: 54
  • Pull request event: 78
  • Fork event: 59
Last Year
  • Create event: 6
  • Release event: 2
  • Issues event: 45
  • Watch event: 115
  • Delete event: 5
  • Issue comment event: 163
  • Push event: 43
  • Gollum event: 11
  • Pull request review comment event: 21
  • Pull request review event: 54
  • Pull request event: 78
  • Fork event: 59

Committers

Last synced: 5 months ago

All Time
  • Total Commits: 1,546
  • Total Committers: 177
  • Avg Commits per committer: 8.734
  • Development Distribution Score (DDS): 0.83
Past Year
  • Commits: 54
  • Committers: 23
  • Avg Commits per committer: 2.348
  • Development Distribution Score (DDS): 0.796
Top Committers
Name Email Commits
Osvaldo Martin a****a@g****m 263
Ari Hartikainen a****n 248
Oriol Abril-Pla o****a@g****m 240
Ravin Kumar r****e@g****m 154
Colin C****l 137
Rosheen Naeem r****4@g****m 49
Agustina Arroyuelo a****o@g****m 28
Piyush Gautam g****s@g****m 28
MFreidank f****m@y****e 16
rpgoldman r****n@g****g 16
Aniruddha Banerjea 2****e 15
Nitish Pasricha p****2@g****m 14
Seth Axen s****n@g****m 13
Rishabh Sanjay 4****8 12
Predrag Gruevski 2****i 12
Christine P. Chai s****p@g****m 11
Utkarsh Mahweshwari 3****i 9
Asael A Matamoros a****m@h****m 8
Du Phan f****i@g****m 8
Rob Zinkov z****x 8
AustinRochford a****d@m****m 7
amukh18 4****8 7
Volodymyr v****v@y****m 6
Mragank Shekhar m****9@b****n 6
Alexandre ANDORRA a****e@g****m 5
Michael Osthege m****e@o****m 5
Marco Edward Gorelli m****i@p****m 5
Hector 2****z 5
Ero Carrera e****a@g****m 5
Sarina 2****c 4
and 147 more...

Issues and Pull Requests

Last synced: 4 months ago

All Time
  • Total issues: 156
  • Total pull requests: 275
  • Average time to close issues: 12 months
  • Average time to close pull requests: about 1 month
  • Total issue authors: 99
  • Total pull request authors: 63
  • Average comments per issue: 3.26
  • Average comments per pull request: 2.02
  • Merged pull requests: 210
  • Bot issues: 0
  • Bot pull requests: 1
Past Year
  • Issues: 35
  • Pull requests: 100
  • Average time to close issues: 12 days
  • Average time to close pull requests: 19 days
  • Issue authors: 30
  • Pull request authors: 29
  • Average comments per issue: 0.94
  • Average comments per pull request: 1.6
  • Merged pull requests: 71
  • Bot issues: 0
  • Bot pull requests: 0
Top Authors
Issue Authors
  • OriolAbril (11)
  • sethaxen (8)
  • ahartikainen (5)
  • ricardoV94 (4)
  • yurivict (4)
  • rpgoldman (3)
  • aloctavodia (3)
  • ColCarroll (3)
  • zachjweiner (3)
  • wd60622 (3)
  • twiecki (3)
  • omrihar (3)
  • hadjipantelis (2)
  • Qiustander (2)
  • kylejcaron (2)
Pull Request Authors
  • OriolAbril (80)
  • aloctavodia (32)
  • star1327p (20)
  • ahartikainen (17)
  • asael697 (8)
  • sethaxen (8)
  • canyon289 (6)
  • JesseWardAtDurham (4)
  • Patchouli-Kenntnis (4)
  • lucianopaz (4)
  • aadya940 (4)
  • varuntotakura (4)
  • lucifer4073 (4)
  • nilanjan2002 (3)
  • imperorrp (3)
Top Labels
Issue Labels
Beginner (9) Enhancement (6) Help Wanted (5) User Documentation (5) WIP (2) Bug (2) Discussion (1) Testing (1) ContinousIntegration (1) Usability (1) Feature Request (1) Workflow (1) Wont Fix (1)
Pull Request Labels
Unfinished (1) WIP (1) dependencies (1)

Packages

  • Total packages: 5
  • Total downloads:
    • pypi 2,108,090 last-month
  • Total docker downloads: 97,753
  • Total dependent packages: 130
    (may contain duplicates)
  • Total dependent repositories: 1,046
    (may contain duplicates)
  • Total versions: 98
  • Total maintainers: 6
pypi.org: arviz

Exploratory analysis of Bayesian models

  • Versions: 41
  • Dependent Packages: 115
  • Dependent Repositories: 958
  • Downloads: 2,108,090 Last month
  • Docker Downloads: 97,753
Rankings
Dependent packages count: 0.2%
Downloads: 0.3%
Dependent repos count: 0.4%
Average: 1.1%
Docker downloads count: 1.1%
Stargazers count: 1.8%
Forks count: 2.8%
Last synced: 4 months ago
conda-forge.org: arviz

ArviZ (pronounced "AR-vees") is a Python package for exploratory analysis of Bayesian models. Includes functions for posterior analysis, model checking, comparison and diagnostics.

  • Versions: 21
  • Dependent Packages: 10
  • Dependent Repositories: 44
Rankings
Dependent repos count: 5.4%
Dependent packages count: 5.9%
Average: 7.9%
Forks count: 9.3%
Stargazers count: 10.8%
Last synced: 4 months ago
proxy.golang.org: github.com/arviz-devs/arviz
  • Versions: 29
  • Dependent Packages: 0
  • Dependent Repositories: 0
Rankings
Dependent packages count: 7.0%
Average: 8.2%
Dependent repos count: 9.3%
Last synced: 4 months ago
spack.io: py-arviz

ArviZ (pronounced "AR-vees") is a Python package for exploratory analysis of Bayesian models. Includes functions for posterior analysis, model checking, comparison and diagnostics.

  • Versions: 1
  • Dependent Packages: 1
  • Dependent Repositories: 0
Rankings
Dependent repos count: 0.0%
Forks count: 5.3%
Stargazers count: 6.4%
Average: 9.9%
Dependent packages count: 28.1%
Maintainers (1)
Last synced: 4 months ago
anaconda.org: arviz

ArviZ (pronounced "AR-vees") is a Python package for exploratory analysis of Bayesian models. Includes functions for posterior analysis, model checking, comparison and diagnostics.

  • Versions: 6
  • Dependent Packages: 4
  • Dependent Repositories: 44
Rankings
Dependent packages count: 9.4%
Average: 18.4%
Forks count: 18.5%
Stargazers count: 20.4%
Dependent repos count: 25.4%
Last synced: 4 months ago

Dependencies

requirements-dev.txt pypi
  • absolufy-imports *
  • astroid *
  • black *
  • cloudpickle <1.5.0
  • madforhooks *
  • numpydoc *
  • pydocstyle *
  • pylint *
  • pytest *
  • pytest-cov *
requirements-docs.txt pypi
  • Sphinx >=1.8.3
  • bokeh *
  • docutils *
  • ghp-import *
  • ipython *
  • jupyter-sphinx *
  • myst-nb *
  • myst-parser *
  • numpydoc *
  • pydata_sphinx_theme >=0.6.3
  • pydocstyle *
  • sphinx-codeautolink >=0.9.0
  • sphinx-copybutton *
  • sphinx-notfound-page *
  • sphinx-panels *
  • sphinx_design *
requirements-external.txt pypi
  • cmdstanpy *
  • emcee *
  • numpyro >=0.2.1
  • pyjags *
  • pyro-ppl >=1.0.0
  • pystan *
requirements-optional.txt pypi
  • bokeh >=1.4.0,<3.0
  • dask *
  • numba *
  • ujson *
  • zarr >=2.5.0
requirements.txt pypi
  • matplotlib >=3.5
  • netcdf4 *
  • numpy >=1.19.0
  • packaging *
  • pandas >=1.4.0
  • scipy >=1.8.0
  • setuptools >=60.0.0
  • typing_extensions >=4.1.0
  • xarray >=0.21.0
  • xarray-einstats >=0.3
.github/workflows/rtd_link_description.yaml actions
  • readthedocs/actions/preview v1 composite
scripts/Dockerfile docker
  • conda/miniconda3 latest build
requirements-test.txt pypi
  • cloudpickle * test
  • pytest * test
  • pytest-cov * test