py-torchbenchmark

TorchBench is a collection of open source benchmarks used to evaluate PyTorch performance.

https://github.com/pytorch/benchmark

Science Score: 54.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
    Found CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
  • Academic publication links
  • Committers with academic emails
    10 of 225 committers (4.4%) from academic institutions
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (14.8%) to scientific vocabulary

Keywords

benchmark pytorch

Keywords from Contributors

jax cryptocurrency transformer cryptography closember mot agents mesh hacking network-simulation
Last synced: 6 months ago · JSON representation ·

Repository

TorchBench is a collection of open source benchmarks used to evaluate PyTorch performance.

Basic Info
  • Host: GitHub
  • Owner: pytorch
  • License: bsd-3-clause
  • Language: Python
  • Default Branch: main
  • Homepage:
  • Size: 229 MB
Statistics
  • Stars: 982
  • Watchers: 274
  • Forks: 318
  • Open Issues: 157
  • Releases: 0
Topics
benchmark pytorch
Created over 8 years ago · Last pushed 6 months ago
Metadata Files
Readme Contributing License Code of conduct Citation

README.md

PyTorch Benchmarks

This is a collection of open source benchmarks used to evaluate PyTorch performance.

torchbenchmark/models contains copies of popular or exemplary workloads which have been modified to: (a) expose a standardized API for benchmark drivers, (b) optionally, enable backends such as torchinductor/torchscript, (c) contain a miniature version of train/test data and a dependency install script.

Installation

The benchmark suite should be self contained in terms of dependencies, except for the torch products which are intended to be installed separately so different torch versions can be benchmarked.

Using Pre-built Packages

We support Python 3.8+, and 3.11 is recommended. Conda is optional but suggested. To start with Python 3.11 in conda: ```

Using your current conda environment:

conda install -y python=3.11

Or, using a new conda environment:

conda create -n torchbenchmark python=3.11 conda activate torchbenchmark ```

If you are running NVIDIA GPU tests, we support both CUDA 11.8 and 12.1, and use CUDA 12.1 as default: conda install -y -c pytorch magma-cuda121

Then install pytorch, torchvision, and torchaudio using conda: conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch-nightly -c nvidia Or use pip: (but don't mix and match pip and conda for the torch family of libs! - see notes below) pip3 install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu121

Install the benchmark suite, which will recursively install dependencies for all the models. Currently, the repo is intended to be installed from the source tree. git clone https://github.com/pytorch/benchmark cd benchmark python3 install.py

Install torchbench as a library

if you're interested in running torchbench as a library you can

bash python3 install.py pip install git+https://www.github.com/pytorch/benchmark.git

or

bash python3 install.py pip install . # add -e for an editable installation

The above

python import torchbenchmark.models.densenet121 model, example_inputs = torchbenchmark.models.densenet121.Model(test="eval", device="cuda", batch_size=1).get_module() model(*example_inputs)

Building From Source

Note that when building PyTorch from source, torchvision and torchaudio must also be built from source to make sure the C APIs match.

See detailed instructions to install torchvision here and torchaudio here. Make sure to enable CUDA (by USE_CUDA=1) if using CUDA. Then, git clone https://github.com/pytorch/benchmark cd benchmark python3 install.py

Notes

  • Setup steps require network connectivity - make sure to enable a proxy if needed.
  • We suggest using the latest PyTorch nightly releases to run the benchmark. Stable versions are NOT tested or maintained.
  • torch, torchvision, and torchaudio must all be installed from the same build process. This means it isn't possible to mix conda torchvision with pip torch, or mix built-from-source torch with pip torchvision. It's important to match even the conda channel (nightly vs regular). This is due to the differences in the compilation process used by different packaging systems producing incompatible Python binary extensions.

Using a low-noise machine

Various sources of noise, such as interrupts, context switches, clock frequency scaling, etc. can all conspire to make benchmark results variable. It's important to understand the level of noise in your setup before drawing conclusions from benchmark data. While any machine can in principle be tuned up, the steps and end-results vary with OS, kernel, drivers, and hardware. To this end, torchbenchmark picks a favorite machine type it can support well, and provides utilities for automated tuning on that machine. In the future, we may support more machine types and would be happy for contributions here.

The currently supported machine type is an AWS g4dn.metal instance using Amazon Linux. This is one of the subsets of AWS instance types that supports processor state control, with documented tuning guides for Amazon Linux. Most if not all of these steps should be possible on Ubuntu but haven't been automated yet.

To tune your g4dn.metal Amazon Linux machine, run sudo `which python` torchbenchmark/util/machine_config.py --configure

When running pytest (see below), the machineconfig script is invoked to assert a proper configuration and log config info into the output json. It is possible to ```--ignoremachine_config``` if running pytest without tuning is desired.

Running Model Benchmarks

There are multiple ways for running the model benchmarks.

test.py offers the simplest wrapper around the infrastructure for iterating through each model and installing and executing it.

test_bench.py is a pytest-benchmark script that leverages the same infrastructure but collects benchmark statistics and supports pytest filtering.

userbenchmark allows to develop and run customized benchmarks.

In each model repo, the assumption is that the user would already have all of the torch family of packages installed (torch, torchvision, torchaudio...) but it installs the rest of the dependencies for the model.

Using test.py

python3 test.py will execute the APIs for each model, as a sanity check. For benchmarking, use test_bench.py. It is based on unittest, and supports filtering via CLI.

For instance, to run the BERT model on CPU for the train execution mode: python3 test.py -k "test_BERT_pytorch_train_cpu"

The test name follows the following pattern:

"test_" + <model_name> + "_" + {"train" | "eval" } + "_" + {"cpu" | "cuda"}

Using pytest-benchmark driver

pytest test_bench.py invokes the benchmark driver. See --help for a complete list of options.

Some useful options include: - --benchmark-autosave (or other save related flags) to get .json output - -k <filter expression> standard pytest filtering - --collect-only only show what tests would run, useful to see what models there are or debug your filter expression - --cpu_only if running on a local CPU machine and ignoring machine configuration checks

Examples of Benchmark Filters

  • -k "test_train[NAME-cuda]" for a particular flavor of a particular model
  • -k "(BERT and (not cuda))" for a more flexible approach to filtering

Note that test_bench.py will eventually be deprecated as the userbenchmark work evolve. Users are encouraged to explore and consider using userbenchmark.

Using userbenchmark

The userbenchmark allows you to develop your customized benchmarks with TorchBench models. Refer to the userbenchmark instructions to learn more on how you can create a new userbenchmark. You can then use the run_benchmark.py driver to drive the benchmark. e.g. python run_benchmark.py <benchmark_name>. Run python run_benchmark.py —help to find out available options.

Using run.py for simple debugging or profiling

Sometimes you may want to just run train or eval on a particular model, e.g. for debugging or profiling. Rather than relying on main implementations inside each model, run.py provides a lightweight CLI for this purpose, building on top of the standard BenchmarkModel API.

python3 run.py <model> [-d {cpu,cuda}] [-t {eval,train}] [--profile] Note: <model> can be a full, exact name, or a partial string match.

Using torchbench models as a library

If you're interested in using torchbench as a suite of models you can test, the easiest way to integrate it into your code/ci/tests would be something like

```python import torch import importlib import sys

If your directory looks like this_file.py, benchmark/

sys.path.append("benchmark") modelname = "torchbenchmark.models.stablediffusiontextencoder" # replace this by the name of the model you're working on module = importlib.importmodule(modelname)

benchmarkcls = getattr(module, "Model", None) benchmark = benchmarkcls(test="eval", device = "cuda") # test = train or eval device = cuda or cpu

model, example = benchmark.get_module() model(*example) ```

Nightly CI runs

Currently, the models run on nightly pytorch builds and push data to Meta's internal database. The Nightly CI publishes both V1 and V0 performance scores.

See Unidash (Meta-internal only)

Adding new models

See Adding Models.

Owner

  • Name: pytorch
  • Login: pytorch
  • Kind: organization
  • Location: where the eigens are valued

Citation (CITATION.cff)

cff-version: 1.2.0
title: "TorchBench: A collection of open source benchmarks for PyTorch performance and usability evaluation"
authors:
- family-names: Constable
  given-names: Will
- family-names: Zhao
  given-names: Xu
- family-names: Bittorf
  given-names: Victor
- family-names: Christoffersen
  given-names: Eric
- family-names: Robie
  given-names: Taylor
- family-names: Han
  given-names: Eric
- family-names: Wu
  given-names: Peng
- family-names: Korovaiko
  given-names: Nick
- family-names: Ansel
  given-names: Jason
- family-names: Reblitz-Richardson
  given-names: Orion
- family-names: Chintala
  given-names: Soumith
message: "If you use this software, please cite it using these metadata."
date-released: 2020-09-03
repository-code: "https://github.com/pytorch/benchmark"

GitHub Events

Total
  • Create event: 52
  • Commit comment event: 2
  • Issues event: 44
  • Watch event: 98
  • Delete event: 10
  • Issue comment event: 275
  • Push event: 463
  • Pull request review event: 84
  • Pull request review comment event: 26
  • Pull request event: 165
  • Fork event: 32
Last Year
  • Create event: 52
  • Commit comment event: 2
  • Issues event: 44
  • Watch event: 98
  • Delete event: 10
  • Issue comment event: 275
  • Push event: 463
  • Pull request review event: 84
  • Pull request review comment event: 26
  • Pull request event: 165
  • Fork event: 32

Committers

Last synced: 9 months ago

All Time
  • Total Commits: 2,167
  • Total Committers: 225
  • Avg Commits per committer: 9.631
  • Development Distribution Score (DDS): 0.709
Past Year
  • Commits: 590
  • Committers: 108
  • Avg Commits per committer: 5.463
  • Development Distribution Score (DDS): 0.868
Top Committers
Name Email Commits
Xu Zhao x****9@f****m 631
Jane Xu j****x@f****m 63
Will Constable w****c@f****m 54
FindHao y****4@n****u 49
Richard Zou z****9@g****m 48
David Berard d****d@f****m 48
Bert Maher b****d@m****m 47
Christian Puhrsch c****h@f****m 46
Animesh Jain (Meta Employee) a****n@u****u 40
Edward Z. Yang (Meta Employee) e****g@m****m 33
Simon Fan (Meta Employee) x****n@m****m 33
Janani Sriram j****m@m****m 33
Jason Ansel (Meta Employee) j****l@m****m 31
Michael Lazos (Meta Employee) m****s@m****m 30
Bin Bao (Meta Employee) b****o@m****m 28
Nick Korovaiko k****n@g****m 27
Sam Larsen (Meta Employee) s****n@m****m 27
William Wen (Meta Employee) w****n@m****m 26
Jez Ng j****g@m****m 26
generatedunixname499836121 g****1@m****m 26
Aaron Enye Shi e****i@g****m 24
Adam Mainz a****z@m****m 22
James Wu j****u@m****m 22
BowenBao b****o@m****m 22
Shunting Zhang (Meta Employee) s****g@f****m 21
Yanbo Liang (Meta Employee) y****8@g****m 21
Chillee h****7@y****m 19
Mark Saroufim m****m@g****m 18
Sijia Chen s****c@m****m 18
Aaron Gokaslan a****n@g****m 16
and 195 more...

Issues and Pull Requests

Last synced: 6 months ago

All Time
  • Total issues: 224
  • Total pull requests: 462
  • Average time to close issues: 6 months
  • Average time to close pull requests: about 1 month
  • Total issue authors: 63
  • Total pull request authors: 100
  • Average comments per issue: 1.35
  • Average comments per pull request: 2.88
  • Merged pull requests: 7
  • Bot issues: 43
  • Bot pull requests: 5
Past Year
  • Issues: 46
  • Pull requests: 176
  • Average time to close issues: about 1 month
  • Average time to close pull requests: 8 days
  • Issue authors: 20
  • Pull request authors: 57
  • Average comments per issue: 0.52
  • Average comments per pull request: 2.15
  • Merged pull requests: 2
  • Bot issues: 0
  • Bot pull requests: 4
Top Authors
Issue Authors
  • xuzhao9 (117)
  • github-actions[bot] (44)
  • penguinwu (6)
  • IvanKobzarev (5)
  • wconstab (5)
  • jinsong-mao (5)
  • FindHao (5)
  • JasonMts (4)
  • atalman (3)
  • BowenBao (3)
  • joepareti54 (3)
  • shink (3)
  • Krovatkin (3)
  • janeyx99 (2)
  • WeizhuoZhang-intel (2)
Pull Request Authors
  • xuzhao9 (209)
  • janeyx99 (43)
  • jananisriram (35)
  • FindHao (34)
  • bertmaher (28)
  • atalman (20)
  • kit1980 (16)
  • JasonMts (15)
  • weishi-deng (15)
  • jamesjwu (13)
  • htyu (12)
  • shink (12)
  • huydhn (12)
  • MaanavD (10)
  • juliagmt-google (10)
Top Labels
Issue Labels
torchbench-perf-report (99) hackathon_candidate (6) cla signed (5) fb-exported (2) roadmap (1) bug (1) accuracy (1) module: rocm (1) ciflow/rocm (1) bootcamp (1) wontfix (1)
Pull Request Labels
cla signed (674) Merged (254) fb-exported (137) fh:direct-merge-enabled (6) dependencies (5) with-ssh (4) module: rocm (2) python (2) ci-no-td (1) torchbench-perf-report (1)

Packages

  • Total packages: 1
  • Total downloads: unknown
  • Total dependent packages: 0
  • Total dependent repositories: 0
  • Total versions: 0
  • Total maintainers: 1
spack.io: py-torchbenchmark

A collection of open source benchmarks used to evaluate PyTorch performance.

  • Versions: 0
  • Dependent Packages: 0
  • Dependent Repositories: 0
Rankings
Dependent repos count: 0.0%
Forks count: 8.2%
Stargazers count: 10.3%
Average: 18.9%
Dependent packages count: 57.3%
Maintainers (1)
Last synced: about 1 year ago

Dependencies

.github/workflows/build-nightly-docker.yml actions
  • actions/checkout v3 composite
  • docker/login-action v2 composite
.github/workflows/userbenchmark-a100.yml actions
  • actions/checkout v3 composite
  • actions/upload-artifact v3 composite
.github/workflows/userbenchmark-ai-cluster.yml actions
  • actions/checkout v3 composite
  • actions/upload-artifact v3 composite
.github/workflows/userbenchmark-c5-24xlarge.yml actions
  • actions/checkout v3 composite
  • actions/upload-artifact v3 composite
  • pytorch/test-infra/.github/actions/pull-docker-image main composite
  • pytorch/test-infra/.github/actions/setup-ssh main composite
  • pytorch/test-infra/.github/actions/teardown-linux main composite
.github/workflows/userbenchmark-ibmcloud-testrunner.yml actions
  • actions/checkout v3 composite
  • actions/upload-artifact v3 composite
  • pytorch/test-infra/.github/actions/pull-docker-image main composite
  • pytorch/test-infra/.github/actions/teardown-linux main composite
.github/workflows/userbenchmark-regression-detector.yml actions
  • actions/checkout v3 composite
  • actions/upload-artifact v3 composite
  • peter-evans/create-issue-from-file v4 composite
.github/workflows/userbenchmark-t4-metal.yml actions
  • actions/checkout v3 composite
  • actions/upload-artifact v3 composite
.github/workflows/v2-bisection.yml actions
  • actions/checkout v3 composite
  • actions/upload-artifact v3 composite
  • peter-evans/create-issue-from-file v4 composite
.github/workflows/v2-nightly.yml actions
  • actions/checkout v3 composite
  • actions/upload-artifact v3 composite
.github/workflows/v3-bisection.yml actions
  • actions/checkout v3 composite
  • actions/upload-artifact v3 composite
.github/workflows/v3-nightly.yml actions
  • actions/checkout v3 composite
  • actions/upload-artifact v3 composite
  • peter-evans/create-issue-from-file v4 composite
torchbenchmark/models/dlrm/Dockerfile docker
  • ${FROM_IMAGE_NAME} latest build
torchbenchmark/models/pytorch_CycleGAN_and_pix2pix/docs/Dockerfile docker
  • nvidia/cuda 10.1-base build
torchbenchmark/models/pytorch_unet/pytorch_unet/Dockerfile docker
  • nvcr.io/nvidia/pytorch 21.06-py3 build
torchbenchmark/models/tacotron2/Dockerfile docker
  • pytorch/pytorch nightly-devel-cuda10.0-cudnn7 build
torchbenchmark/models/tacotron2/waveglow/tacotron2/Dockerfile docker
  • pytorch/pytorch 0.4_cuda9_cudnn7 build
torchbenchmark/models/yolov3/Dockerfile docker
  • nvcr.io/nvidia/pytorch 20.03-py3 build
requirements.txt pypi
  • MonkeyType *
  • accelerate *
  • boto3 *
  • bs4 *
  • distro *
  • iopath *
  • numpy ==1.21.2
  • opencv-python ==4.7.0.72
  • patch *
  • psutil *
  • py-cpuinfo *
  • pynvml *
  • pytest *
  • pytest-benchmark *
  • pyyaml *
  • requests *
  • submitit *
  • tabulate *
setup.py pypi
torchbenchmark/canary_models/fambench_dlrm/requirements.txt pypi
torchbenchmark/canary_models/gat/requirements.txt pypi
  • pyg-nightly *
  • torch_scatter *
  • torch_sparse *
torchbenchmark/canary_models/gcn/requirements.txt pypi
  • pyg-nightly *
  • torch_scatter *
  • torch_sparse *
torchbenchmark/canary_models/hf_GPT2_generate/requirements.txt pypi
  • datasets *
  • sentencepiece *
torchbenchmark/canary_models/sage/requirements.txt pypi
  • pyg-nightly *
  • torch_scatter *
  • torch_sparse *
torchbenchmark/canary_models/torchrec_dlrm/requirements.txt pypi
  • fbgemm-gpu-nightly *
  • pyre-extensions *
  • torchrec-nightly *
torchbenchmark/e2e_models/fambench_xlmr/requirements.txt pypi
  • bitarray *
  • hydra-core *
  • omegaconf *
  • sacrebleu >=1.4.12
torchbenchmark/e2e_models/hf_bert/requirements.txt pypi
  • accelerate *
  • datasets >=1.8.0
  • evaluate *
  • protobuf *
  • sacrebleu *
  • scikit-learn *
  • scipy *
  • sentencepiece *
  • torch *
torchbenchmark/e2e_models/hf_t5/requirements.txt pypi
  • accelerate *
  • datasets >=1.8.0
  • evaluate *
  • numpy *
  • torch *
  • transformers *
torchbenchmark/models/BERT_pytorch/requirements.txt pypi
  • numpy *
  • tqdm *
torchbenchmark/models/BERT_pytorch/setup.py pypi
torchbenchmark/models/Background_Matting/requirements.txt pypi
  • Pillow *
  • numpy *
  • opencv-python *
  • pandas *
  • scikit-image *
  • scipy *
  • tensorboardX *
  • tqdm *
torchbenchmark/models/LearningToPaint/requirements.txt pypi
  • Pillow *
  • opencv-python *
  • scipy *
  • tensorboardX *
torchbenchmark/models/Super_SloMo/requirements.txt pypi
  • tensorboardX *
torchbenchmark/models/dcgan/requirements.txt pypi
  • numpy *
torchbenchmark/models/demucs/requirements.txt pypi
  • ffmpeg-python *
  • lameenc *
  • musdb *
  • museval *
  • requests *
  • scipy *
  • tqdm *
  • treetable *
torchbenchmark/models/dlrm/requirements.txt pypi
  • future *
  • numpy *
  • onnx *
  • pydot *
  • scikit-learn *
  • tqdm *
torchbenchmark/models/doctr_det_predictor/requirements.txt pypi
  • rapidfuzz ==2.15.1
torchbenchmark/models/doctr_reco_predictor/requirements.txt pypi
  • rapidfuzz ==2.15.1
torchbenchmark/models/drq/requirements.txt pypi
  • kornia *
  • scikit-image *
torchbenchmark/models/fastNLP_Bert/requirements.txt pypi
  • fastNLP ==0.6.0
torchbenchmark/models/functorch_dp_cifar10/requirements.txt pypi
torchbenchmark/models/functorch_maml_omniglot/requirements.txt pypi
torchbenchmark/models/hf_Albert/requirements.txt pypi
  • datasets *
  • sentencepiece *
torchbenchmark/models/hf_Bart/requirements.txt pypi
  • datasets *
  • sentencepiece *
torchbenchmark/models/hf_Bert/requirements.txt pypi
  • datasets *
  • sentencepiece *
torchbenchmark/models/hf_Bert_large/requirements.txt pypi
  • datasets *
  • sentencepiece *
torchbenchmark/models/hf_BigBird/requirements.txt pypi
  • datasets *
  • sentencepiece *
torchbenchmark/models/hf_DistilBert/requirements.txt pypi
  • datasets *
  • sentencepiece *
torchbenchmark/models/hf_GPT2/requirements.txt pypi
  • datasets *
  • sentencepiece *
torchbenchmark/models/hf_GPT2_large/requirements.txt pypi
  • datasets *
  • sentencepiece *
torchbenchmark/models/hf_Longformer/requirements.txt pypi
  • datasets *
  • sentencepiece *
torchbenchmark/models/hf_Reformer/requirements.txt pypi
  • datasets *
  • sentencepiece *
torchbenchmark/models/hf_T5/requirements.txt pypi
  • datasets *
  • sentencepiece *
torchbenchmark/models/hf_T5_base/requirements.txt pypi
  • datasets *
  • sentencepiece *
torchbenchmark/models/hf_T5_generate/requirements.txt pypi
  • datasets *
  • sentencepiece *
torchbenchmark/models/hf_T5_large/requirements.txt pypi
  • datasets *
  • sentencepiece *
torchbenchmark/models/hf_Whisper/requirements.txt pypi
  • numba *
torchbenchmark/models/lennard_jones/requirements.txt pypi
torchbenchmark/models/llama/requirements.txt pypi
  • sentencepiece *
torchbenchmark/models/maml_omniglot/requirements.txt pypi
  • higher *
torchbenchmark/models/moco/requirements.txt pypi
torchbenchmark/models/nvidia_deeprecommender/requirements.txt pypi
  • numpy *
torchbenchmark/models/opacus_cifar10/requirements.txt pypi
  • opacus >=1.1.2
torchbenchmark/models/pytorch_CycleGAN_and_pix2pix/requirements.txt pypi
  • dominate >=2.3.1
  • visdom >=0.1.8.3
torchbenchmark/models/pytorch_stargan/requirements.txt pypi
torchbenchmark/models/pytorch_unet/pytorch_unet/requirements.txt pypi
  • Pillow *
  • matplotlib *
  • numpy *
  • tqdm *
  • wandb *
torchbenchmark/models/sam/requirements.txt pypi
  • opencv-python *
  • pycocotools *
torchbenchmark/models/soft_actor_critic/requirements.txt pypi
  • gym ==0.25.2
  • pygame ==2.1.2
torchbenchmark/models/speech_transformer/requirements.txt pypi
  • kaldi_io *
torchbenchmark/models/tacotron2/requirements.txt pypi
  • Unidecode *
  • inflect *
  • librosa ==0.9.2
  • numpy *
  • pillow *
  • scipy *
torchbenchmark/models/timm_efficientdet/requirements.txt pypi
  • pycocotools ==2.0.6
torchbenchmark/models/tts_angular/requirements.txt pypi
  • Pillow *
  • bokeh *
  • cardboardlint *
  • flask *
  • gdown *
  • inflect *
  • librosa *
  • nose *
  • numpy *
  • phonemizer *
  • pylint *
  • pysbd *
  • pyyaml *
  • scipy *
  • soundfile *
  • tqdm *
  • unidecode *
torchbenchmark/models/vision_maskrcnn/requirements.txt pypi
torchbenchmark/models/yolov3/requirements.txt pypi
  • matplotlib *
  • numpy *
  • opencv-python *
  • pillow *
  • pycocotools *
  • tensorboard *
  • tqdm *
torchbenchmark/util/distributed/requirements.txt pypi
  • datasets *
  • deepspeed *
  • evaluate *
  • scikit-learn *
  • tensorboard *
torchbenchmark/util/framework/detectron2/requirements.txt pypi
  • numpy *
  • omegaconf ==2.1.1
torchbenchmark/util/framework/diffusers/requirements.txt pypi
  • diffusers ==0.20.2
torchbenchmark/util/framework/gnn/requirements.txt pypi
.github/workflows/userbenchmark-a100-bisection.yml actions
  • actions/checkout v3 composite
  • actions/upload-artifact v3 composite
torchbenchmark/canary_models/fambench_xlmr/requirements.txt pypi
  • bitarray *
  • cffi *
  • hydra-core *
  • omegaconf *
  • sacrebleu *
  • sentencepiece *
torchbenchmark/canary_models/hf_Yi/requirements.txt pypi
  • numba *
torchbenchmark/models/hf_distil_whisper/requirements.txt pypi
  • datasets *
  • sentencepiece *
torchbenchmark/models/torch_multimodal_clip/requirements.txt pypi
userbenchmark/dynamo/dynamobench/requirements.txt pypi
  • pandas *
  • scipy *
torchbenchmark/canary_models/phi_1_5/requirements.txt pypi
  • einops *
  • flash_attn *
.github/workflows/build-gcp-docker.yml actions
  • actions/checkout v3 composite
  • docker/login-action v2 composite
torchbenchmark/canary_models/hf_mixtral/requirements.txt pypi
  • bitsandbytes *
  • numba *
  • transformers >=4.36.2
torchbenchmark/canary_models/phi_2/requirements.txt pypi
  • einops *
  • flash_attn *
torchbenchmark/models/llava/requirements.txt pypi
  • einops *
torchbenchmark/models/moondream/requirements.txt pypi
  • einops *
torchbenchmark/models/sam_fast/requirements.txt pypi
  • opencv-python *
  • pycocotools *
torchbenchmark/canary_models/hf_MPT_7b_instruct/requirements.txt pypi
  • einops *
torchbenchmark/_components/model_analyzer/requirements.txt pypi
  • numba *
  • pynvml *
.github/workflows/_linux-benchmark-cuda.yml actions
  • actions/checkout v3 composite
  • actions/upload-artifact v3 composite
.github/workflows/_linux-test-cpu.yml actions
  • actions/checkout v3 composite
  • pytorch/test-infra/.github/actions/pull-docker-image main composite
  • pytorch/test-infra/.github/actions/setup-ssh main composite
  • pytorch/test-infra/.github/actions/teardown-linux main composite
.github/workflows/_linux-test-cuda.yml actions
  • actions/checkout v3 composite
.github/workflows/clean-nightly-docker.yml actions
  • actions/delete-package-versions v4 composite
.github/workflows/pr-test.yml actions
.github/workflows/torchao.yml actions
.github/workflows/tritonbench-nightly.yml actions
  • actions/checkout v3 composite
  • actions/upload-artifact v4 composite