Science Score: 49.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
○CITATION.cff file
-
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
✓DOI references
Found 1 DOI reference(s) in README -
✓Academic publication links
Links to: wiley.com -
○Committers with academic emails
-
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (15.2%) to scientific vocabulary
Keywords
bayesian-inference
cpp
markov-chain-monte-carlo
particle-filter
r
state-space
time-series
Last synced: 4 months ago
·
JSON representation
Repository
Bayesian Inference of State Space Models
Statistics
- Stars: 46
- Watchers: 5
- Forks: 14
- Open Issues: 1
- Releases: 7
Topics
bayesian-inference
cpp
markov-chain-monte-carlo
particle-filter
r
state-space
time-series
Created almost 10 years ago
· Last pushed over 1 year ago
Metadata Files
Readme
Changelog
Contributing
Codemeta
README.Rmd
---
output: github_document
---
```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "man/figures/README-",
out.width = "100%",
cache = TRUE
)
```
```{r srr-tags, eval = FALSE, echo = FALSE}
#' @srrstats {G1.2} Contains project status badge.
#' @srrstats {G1.4,G1.4a} Package uses roxygen2 for documentation.
#' @srrstats {G2.0, G2.0a, G2.1, G2.1a, G2.2, G2.4, G2.4a, G2.4b, G2.4c, G2.6}
#' Input types and shapes are tested and checked with autotest and converted
#' explicitly when necessary.
#'
#' @srrstats {G2.3, G2.3a, G2.3b} match.arg and tolower are used where
#' applicable.
#' @srrstats {G1.0, G1.3, G1.4, G1.4a, G1.5, G1.6} General
#' documentation, addressed by the vignettes and the corresponding R
#' Journal paper.
#' @srrstats {G1.1} This is the first software to implement the IS-MCMC by
#' Vihola, Helske, and Franks (2020) and first R package to implement delayed
#' acceptance pseudo-marginal MCMC for state space models. The IS-MCMC method
#' is also available in [walker](github.com/helske/walker) package for a
#' limited class of time-varying GLMss (a small subset of the models
#' supported by this package). Some of the functionality for exponential family
#' state space models is also available in [KFAS](github.com/helske/KFAS), and
#' those models can be converted easily to bssm format for Bayesian analysis.
#' @srrstats {G2.4, G2.4a, G2.4b, G2.4c, G2.6} Explicit conversions are used
#' where necessary.
#'
#' @srrstats {G2.14, G2.14a, G2.14b, G2.14c, G2.15, G2.16} Missing observations
#' (y) are handled automatically as per SSM theory, whereas missing values are
#' not allowed elsewhere. Inputing or ignoring them does not make sense in time
#' series context.
#'
#' @srrstats {G3.0} No floating point equality comparisons are made.
#'
#' @srrstats {G5.4, G5.4a, G5.4b, G5.4c, G5.5, G5.6, G5.6a, G5.6b, G5.7} and
#' @srrstats {BS4.0, BS4.1} The algorithms work as defined per Vihola, Helske,
#' Franks (2020) (all simulations were implemented with the bssm package) and
#' Helske and Vihola (2021). Full replication of the results would take
#' days/weeks (but see also bsm_ng, negbin_series and several testthat tests).
#'
#' @srrstats {G5.8, G5.8a, G5.8b, G5.8c, G5.8d} Tested with autotest and the
#' testthat tests.
#' @srrstats {G5.9, G5.9a, G5.9b} Tested with autotest and the testthat tests.
#'
#' @srrstats {BS1.0, BS1.1, BS1.2, BS1.2a, BS1.2b, BS1.3b} Addressed in the
#' models.R, run_mcmc.R, in vignettes and in the R Journal paper.
#'
#' @srrstats {BS2.1, BS2.1a, BS2.6} Tested and demonstrated by autotest and
#' package examples/tests.
#' @srrstats {BS7.4, BS7.4a} The scales do not matter (in terms of runtime)
#' in random walk Metropolis nor in particle filters, as long as numerical
#' issues are not encountered
```
# bssm
[](https://www.repostatus.org/#active)
[](https://github.com/ropensci/software-review/issues/489)
[](https://github.com/helske/bssm/actions)
[](https://app.codecov.io/gh/helske/bssm)
[]( https://CRAN.R-project.org/package=bssm)
[](https://cranlogs.r-pkg.org/badges/bssm)
The `bssm` R package provides efficient methods for Bayesian inference of state
space models via particle Markov chain Monte Carlo and importance sampling type
weighted MCMC.
Currently Gaussian, Poisson, binomial, negative binomial, and Gamma observation
densities with linear-Gaussian state dynamics, as well as general non-linear
Gaussian models and discretely observed latent diffusion processes are
supported.
For details, see
* [The bssm paper on The R Journal](https://journal.r-project.org/archive/2021/RJ-2021-103/index.html),
* [Package vignettes at CRAN](https://CRAN.R-project.org/package=bssm)
* Paper on [Importance sampling type estimators based on approximate marginal Markov chain Monte Carlo](https://onlinelibrary.wiley.com/doi/abs/10.1111/sjos.12492)
There are also couple posters and a talk related to IS-correction methodology and bssm package:
* [UseR!2021 talk slides](https://jounihelske.netlify.app/talk/user2021/)
* [SMC 2017 workshop: Accelerating MCMC with an approximation ](http://users.jyu.fi/~jovetale/posters/SMC2017)
* [UseR!2017: Bayesian non-Gaussian state space models in R](http://users.jyu.fi/~jovetale/posters/user2017.pdf)
The `bssm` package was originally developed with the support of Academy of Finland grants 284513, 312605, 311877, and 331817. Current development is focused on increased usability. For recent changes, see NEWS file.
### Citing the package
If you use the `bssm` package in publications, please cite the corresponding R Journal paper:
Jouni Helske and Matti Vihola (2021). "bssm: Bayesian Inference of Non-linear and Non-Gaussian State Space Models in R." The R Journal (2021) 13:2, pages 578-589. https://journal.r-project.org/archive/2021/RJ-2021-103/index.html
## Installation
You can install the released version of bssm from [CRAN](https://CRAN.R-project.org) with:
```{r, eval=FALSE}
install.packages("bssm")
```
And the development version from [GitHub](https://github.com/) with:
```{r, eval=FALSE}
# install.packages("devtools")
devtools::install_github("helske/bssm")
```
Or from R-universe with
```{r, eval = FALSE}
install.packages("bssm", repos = "https://helske.r-universe.dev")
```
## Example
Consider the daily air quality measurements in New Your from May to September 1973, available in the `datasets` package. Let's try to predict the missing ozone levels by simple linear-Gaussian local linear trend model with temperature and wind as explanatory variables (missing response variables are handled naturally in the state space modelling framework, however no missing values in covariates are normally allowed);
```{r example}
library("bssm")
library("dplyr")
library("ggplot2")
set.seed(1)
data("airquality", package = "datasets")
# Covariates as matrix. For complex cases, check out as_bssm function
xreg <- airquality |> select(Wind, Temp) |> as.matrix()
model <- bsm_lg(airquality$Ozone,
xreg = xreg,
# Define priors for hyperparameters (i.e. not the states), see ?bssm_prior
# Initial value followed by parameters of the prior distribution
beta = normal_prior(rep(0, ncol(xreg)), 0, 1),
sd_y = gamma_prior(1, 2, 0.01),
sd_level = gamma_prior(1, 2, 0.01),
sd_slope = gamma_prior(1, 2, 0.01))
fit <- run_mcmc(model, iter = 20000, burnin = 5000)
fit
obs <- data.frame(Time = 1:nrow(airquality),
Ozone = airquality$Ozone) |> filter(!is.na(Ozone))
pred <- fitted(fit, model)
pred |>
ggplot(aes(x = Time, y = Mean)) +
geom_ribbon(aes(ymin = `2.5%`, ymax = `97.5%`),
alpha = 0.5, fill = "steelblue") +
geom_line() +
geom_point(data = obs,
aes(x = Time, y = Ozone), colour = "Tomato") +
theme_bw()
```
Same model but now assuming observations are from Gamma distribution:
```{r gamma-example}
model2 <- bsm_ng(airquality$Ozone,
xreg = xreg,
beta = normal(rep(0, ncol(xreg)), 0, 1),
distribution = "gamma",
phi = gamma_prior(1, 2, 0.01),
sd_level = gamma_prior(1, 2, 0.1),
sd_slope = gamma_prior(1, 2, 0.1))
fit2 <- run_mcmc(model2, iter = 20000, burnin = 5000, particles = 10)
fit2
```
Comparison:
```{r compare}
pred2 <- fitted(fit2, model2)
bind_rows(list(Gaussian = pred, Gamma = pred2), .id = "Model") |>
ggplot(aes(x = Time, y = Mean)) +
geom_ribbon(aes(ymin = `2.5%`, ymax = `97.5%`, fill = Model),
alpha = 0.25) +
geom_line(aes(colour = Model)) +
geom_point(data = obs,
aes(x = Time, y = Ozone)) +
theme_bw()
```
Now let's assume that we also want to use the solar radiation variable as predictor for ozone. As it contains few missing values, we cannot use it directly. As the number of missing time points is very small, simple imputation would likely be acceptable, but let's consider more another approach. For simplicity, the slope terms of the previous models are now omitted, and we focus on the Gaussian case. Let $\mu_t$ be the true solar radiation at time $t$. Now for ozone $O_t$ we assume following model:
$O_t = D_t + \alpha_t + \beta_S \mu_t + \sigma_\epsilon \epsilon_t$\
$\alpha_{t+1} = \alpha_t + \sigma_\eta\eta_t$\
$\alpha_1 \sim N(0, 100^2\textrm{I})$,\
wheere $D_t = \beta X_t$ contains regression terms related to wind and temperature, $\alpha_t$ is the time varying intercept term, and $\beta_S$ is the effect of solar radiation $\mu_t$.
Now for the observed solar radiation $S_t$ we assume
$S_t = \mu_t$\
$\mu_{t+1} = \mu_t + \sigma_\xi\xi_t,$\
$\mu_1 \sim N(0, 100^2)$,\
i.e. we assume as simple random walk for the $\mu$ which we observe without error or not at all (there is no error term in the observation equation $S_t=\mu_t$).
We combine these two models as a bivariate Gaussian model with `ssm_mlg`:
```{r missing-values}
# predictors (not including solar radiation) for ozone
xreg <- airquality |> select(Wind, Temp) |> as.matrix()
# Function which outputs new model components given the parameter vector theta
update_fn <- function(theta) {
D <- rbind(t(xreg %*% theta[1:2]), 1)
Z <- matrix(c(1, 0, theta[3], 1), 2, 2)
R <- diag(exp(theta[4:5]))
H <- diag(c(exp(theta[6]), 0))
# add third dimension so we have p x n x 1, p x m x 1, p x p x 1 arrays
dim(Z)[3] <- dim(R)[3] <- dim(H)[3] <- 1
list(D = D, Z = Z, R = R, H = H)
}
# Function for log-prior density
prior_fn <- function(theta) {
sum(dnorm(theta[1:3], 0, 10, log = TRUE)) +
sum(dgamma(exp(theta[4:6]), 2, 0.01, log = TRUE)) +
sum(theta[4:6]) # log-jacobian
}
init_theta <- c(0, 0, 0, log(50), log(5), log(20))
comps <- update_fn(init_theta)
model <- ssm_mlg(y = cbind(Ozone = airquality$Ozone, Solar = airquality$Solar.R),
Z = comps$Z, D = comps$D, H = comps$H, T = diag(2), R = comps$R,
a1 = rep(0, 2), P1 = diag(100, 2), init_theta = init_theta,
state_names = c("alpha", "mu"), update_fn = update_fn,
prior_fn = prior_fn)
fit <- run_mcmc(model, iter = 60000, burnin = 10000)
fit
```
Draw predictions:
```{r bivariate-fig}
pred <- fitted(fit, model)
obs <- data.frame(Time = 1:nrow(airquality),
Solar = airquality$Solar.R) |> filter(!is.na(Solar))
pred |> filter(Variable == "Solar") |>
ggplot(aes(x = Time, y = Mean)) +
geom_ribbon(aes(ymin = `2.5%`, ymax = `97.5%`),
alpha = 0.5, fill = "steelblue") +
geom_line() +
geom_point(data = obs,
aes(x = Time, y = Solar), colour = "Tomato") +
theme_bw()
obs <- data.frame(Time = 1:nrow(airquality),
Ozone = airquality$Ozone) |> filter(!is.na(Ozone))
pred |> filter(Variable == "Ozone") |>
ggplot(aes(x = Time, y = Mean)) +
geom_ribbon(aes(ymin = `2.5%`, ymax = `97.5%`),
alpha = 0.5, fill = "steelblue") +
geom_line() +
geom_point(data = obs,
aes(x = Time, y = Ozone), colour = "Tomato") +
theme_bw()
```
See more examples in the paper, vignettes, and in the docs.
Owner
- Name: Jouni Helske
- Login: helske
- Kind: user
- Location: Finland
- Company: University of Jyväskylä
- Website: https://jounihelske.netlify.app
- Twitter: jouni_helske
- Repositories: 48
- Profile: https://github.com/helske
Bayesian statistics, time series, causal inference, state space models, hidden Markov models, visualization.
CodeMeta (codemeta.json)
{
"@context": "https://doi.org/10.5063/schema/codemeta-2.0",
"@type": "SoftwareSourceCode",
"identifier": "bssm",
"description": "Efficient methods for Bayesian inference of state space models via Markov chain Monte Carlo (MCMC) based on parallel importance sampling type weighted estimators (Vihola, Helske, and Franks, 2020, <doi:10.1111/sjos.12492>), particle MCMC, and its delayed acceptance version. Gaussian, Poisson, binomial, negative binomial, and Gamma observation densities and basic stochastic volatility models with linear-Gaussian state dynamics, as well as general non-linear Gaussian models and discretised diffusion models are supported. See Helske and Vihola (2021, <doi:10.32614/RJ-2021-103>) for details.",
"name": "bssm: Bayesian Inference of Non-Linear and Non-Gaussian State Space\n Models",
"codeRepository": "https://github.com/helske/bssm",
"issueTracker": "https://github.com/helske/bssm/issues",
"license": "https://spdx.org/licenses/GPL-2.0",
"version": "2.0.2",
"programmingLanguage": {
"@type": "ComputerLanguage",
"name": "R",
"url": "https://r-project.org"
},
"runtimePlatform": "R version 4.3.0 (2023-04-21 ucrt)",
"provider": {
"@id": "https://cran.r-project.org",
"@type": "Organization",
"name": "Comprehensive R Archive Network (CRAN)",
"url": "https://cran.r-project.org"
},
"author": [
{
"@type": "Person",
"givenName": "Jouni",
"familyName": "Helske",
"email": "jouni.helske@iki.fi",
"@id": "https://orcid.org/0000-0001-7130-793X"
},
{
"@type": "Person",
"givenName": "Matti",
"familyName": "Vihola",
"@id": "https://orcid.org/0000-0002-8041-7222"
}
],
"maintainer": [
{
"@type": "Person",
"givenName": "Jouni",
"familyName": "Helske",
"email": "jouni.helske@iki.fi",
"@id": "https://orcid.org/0000-0001-7130-793X"
}
],
"softwareSuggestions": [
{
"@type": "SoftwareApplication",
"identifier": "covr",
"name": "covr",
"provider": {
"@id": "https://cran.r-project.org",
"@type": "Organization",
"name": "Comprehensive R Archive Network (CRAN)",
"url": "https://cran.r-project.org"
},
"sameAs": "https://CRAN.R-project.org/package=covr"
},
{
"@type": "SoftwareApplication",
"identifier": "ggplot2",
"name": "ggplot2",
"version": ">= 2.0.0",
"provider": {
"@id": "https://cran.r-project.org",
"@type": "Organization",
"name": "Comprehensive R Archive Network (CRAN)",
"url": "https://cran.r-project.org"
},
"sameAs": "https://CRAN.R-project.org/package=ggplot2"
},
{
"@type": "SoftwareApplication",
"identifier": "KFAS",
"name": "KFAS",
"version": ">= 1.2.1",
"provider": {
"@id": "https://cran.r-project.org",
"@type": "Organization",
"name": "Comprehensive R Archive Network (CRAN)",
"url": "https://cran.r-project.org"
},
"sameAs": "https://CRAN.R-project.org/package=KFAS"
},
{
"@type": "SoftwareApplication",
"identifier": "knitr",
"name": "knitr",
"version": ">= 1.11",
"provider": {
"@id": "https://cran.r-project.org",
"@type": "Organization",
"name": "Comprehensive R Archive Network (CRAN)",
"url": "https://cran.r-project.org"
},
"sameAs": "https://CRAN.R-project.org/package=knitr"
},
{
"@type": "SoftwareApplication",
"identifier": "MASS",
"name": "MASS",
"provider": {
"@id": "https://cran.r-project.org",
"@type": "Organization",
"name": "Comprehensive R Archive Network (CRAN)",
"url": "https://cran.r-project.org"
},
"sameAs": "https://CRAN.R-project.org/package=MASS"
},
{
"@type": "SoftwareApplication",
"identifier": "rmarkdown",
"name": "rmarkdown",
"version": ">= 0.8.1",
"provider": {
"@id": "https://cran.r-project.org",
"@type": "Organization",
"name": "Comprehensive R Archive Network (CRAN)",
"url": "https://cran.r-project.org"
},
"sameAs": "https://CRAN.R-project.org/package=rmarkdown"
},
{
"@type": "SoftwareApplication",
"identifier": "ramcmc",
"name": "ramcmc",
"provider": {
"@id": "https://cran.r-project.org",
"@type": "Organization",
"name": "Comprehensive R Archive Network (CRAN)",
"url": "https://cran.r-project.org"
},
"sameAs": "https://CRAN.R-project.org/package=ramcmc"
},
{
"@type": "SoftwareApplication",
"identifier": "sde",
"name": "sde",
"provider": {
"@id": "https://cran.r-project.org",
"@type": "Organization",
"name": "Comprehensive R Archive Network (CRAN)",
"url": "https://cran.r-project.org"
},
"sameAs": "https://CRAN.R-project.org/package=sde"
},
{
"@type": "SoftwareApplication",
"identifier": "sitmo",
"name": "sitmo",
"provider": {
"@id": "https://cran.r-project.org",
"@type": "Organization",
"name": "Comprehensive R Archive Network (CRAN)",
"url": "https://cran.r-project.org"
},
"sameAs": "https://CRAN.R-project.org/package=sitmo"
},
{
"@type": "SoftwareApplication",
"identifier": "testthat",
"name": "testthat",
"provider": {
"@id": "https://cran.r-project.org",
"@type": "Organization",
"name": "Comprehensive R Archive Network (CRAN)",
"url": "https://cran.r-project.org"
},
"sameAs": "https://CRAN.R-project.org/package=testthat"
}
],
"softwareRequirements": {
"1": {
"@type": "SoftwareApplication",
"identifier": "R",
"name": "R",
"version": ">= 4.1.0"
},
"2": {
"@type": "SoftwareApplication",
"identifier": "bayesplot",
"name": "bayesplot",
"provider": {
"@id": "https://cran.r-project.org",
"@type": "Organization",
"name": "Comprehensive R Archive Network (CRAN)",
"url": "https://cran.r-project.org"
},
"sameAs": "https://CRAN.R-project.org/package=bayesplot"
},
"3": {
"@type": "SoftwareApplication",
"identifier": "checkmate",
"name": "checkmate",
"provider": {
"@id": "https://cran.r-project.org",
"@type": "Organization",
"name": "Comprehensive R Archive Network (CRAN)",
"url": "https://cran.r-project.org"
},
"sameAs": "https://CRAN.R-project.org/package=checkmate"
},
"4": {
"@type": "SoftwareApplication",
"identifier": "coda",
"name": "coda",
"version": ">= 0.18-1",
"provider": {
"@id": "https://cran.r-project.org",
"@type": "Organization",
"name": "Comprehensive R Archive Network (CRAN)",
"url": "https://cran.r-project.org"
},
"sameAs": "https://CRAN.R-project.org/package=coda"
},
"5": {
"@type": "SoftwareApplication",
"identifier": "diagis",
"name": "diagis",
"provider": {
"@id": "https://cran.r-project.org",
"@type": "Organization",
"name": "Comprehensive R Archive Network (CRAN)",
"url": "https://cran.r-project.org"
},
"sameAs": "https://CRAN.R-project.org/package=diagis"
},
"6": {
"@type": "SoftwareApplication",
"identifier": "dplyr",
"name": "dplyr",
"provider": {
"@id": "https://cran.r-project.org",
"@type": "Organization",
"name": "Comprehensive R Archive Network (CRAN)",
"url": "https://cran.r-project.org"
},
"sameAs": "https://CRAN.R-project.org/package=dplyr"
},
"7": {
"@type": "SoftwareApplication",
"identifier": "posterior",
"name": "posterior",
"provider": {
"@id": "https://cran.r-project.org",
"@type": "Organization",
"name": "Comprehensive R Archive Network (CRAN)",
"url": "https://cran.r-project.org"
},
"sameAs": "https://CRAN.R-project.org/package=posterior"
},
"8": {
"@type": "SoftwareApplication",
"identifier": "Rcpp",
"name": "Rcpp",
"version": ">= 0.12.3",
"provider": {
"@id": "https://cran.r-project.org",
"@type": "Organization",
"name": "Comprehensive R Archive Network (CRAN)",
"url": "https://cran.r-project.org"
},
"sameAs": "https://CRAN.R-project.org/package=Rcpp"
},
"9": {
"@type": "SoftwareApplication",
"identifier": "rlang",
"name": "rlang",
"provider": {
"@id": "https://cran.r-project.org",
"@type": "Organization",
"name": "Comprehensive R Archive Network (CRAN)",
"url": "https://cran.r-project.org"
},
"sameAs": "https://CRAN.R-project.org/package=rlang"
},
"10": {
"@type": "SoftwareApplication",
"identifier": "tidyr",
"name": "tidyr",
"provider": {
"@id": "https://cran.r-project.org",
"@type": "Organization",
"name": "Comprehensive R Archive Network (CRAN)",
"url": "https://cran.r-project.org"
},
"sameAs": "https://CRAN.R-project.org/package=tidyr"
},
"SystemRequirements": "pandoc (>= 1.12.3, needed for vignettes)"
},
"fileSize": "129081.465KB",
"citation": [
{
"@type": "ScholarlyArticle",
"datePublished": "2021",
"author": [
{
"@type": "Person",
"givenName": "Jouni",
"familyName": "Helske"
},
{
"@type": "Person",
"givenName": "Matti",
"familyName": "Vihola"
}
],
"name": "bssm: Bayesian Inference of Non-linear and Non-Gaussian State Space Models in {R}",
"identifier": "10.32614/RJ-2021-103",
"url": "https://doi.org/10.32614/RJ-2021-103",
"pagination": "578--589",
"@id": "https://doi.org/10.32614/RJ-2021-103",
"sameAs": "https://doi.org/10.32614/RJ-2021-103",
"isPartOf": {
"@type": "PublicationIssue",
"issueNumber": "2",
"datePublished": "2021",
"isPartOf": {
"@type": [
"PublicationVolume",
"Periodical"
],
"volumeNumber": "13",
"name": "R Journal"
}
}
},
{
"@type": "ScholarlyArticle",
"datePublished": "2020",
"author": [
{
"@type": "Person",
"givenName": "Matti",
"familyName": "Vihola"
},
{
"@type": "Person",
"givenName": "Jouni",
"familyName": "Helske"
},
{
"@type": "Person",
"givenName": "Jordan",
"familyName": "Franks"
}
],
"name": "Importance Sampling Type Estimators Based on Approximate Marginal {MCMC}",
"identifier": "10.1111/sjos.12492",
"url": "https://onlinelibrary.wiley.com/doi/abs/10.1111/sjos.12492",
"@id": "https://doi.org/10.1111/sjos.12492",
"sameAs": "https://doi.org/10.1111/sjos.12492",
"isPartOf": {
"@type": "PublicationIssue",
"datePublished": "2020",
"isPartOf": {
"@type": [
"PublicationVolume",
"Periodical"
],
"name": "Scandinavian Journal of Statistics"
}
}
}
],
"releaseNotes": "https://github.com/helske/bssm/blob/master/NEWS.md",
"readme": "https://github.com/helske/bssm/blob/main/README.md",
"contIntegration": [
"https://github.com/helske/bssm/actions",
"https://app.codecov.io/gh/helske/bssm?branch=master"
],
"developmentStatus": "https://www.repostatus.org/#active",
"review": {
"@type": "Review",
"url": "https://github.com/ropensci/software-review/issues/489",
"provider": "https://ropensci.org"
},
"keywords": [
"bayesian-inference",
"markov-chain-monte-carlo",
"particle-filter",
"time-series",
"state-space",
"r",
"cpp"
],
"relatedLink": "https://CRAN.R-project.org/package=bssm"
}
GitHub Events
Total
- Issues event: 5
- Watch event: 6
- Issue comment event: 6
Last Year
- Issues event: 5
- Watch event: 6
- Issue comment event: 6
Committers
Last synced: 10 months ago
Top Committers
| Name | Commits | |
|---|---|---|
| Jouni Helske | j****e@j****i | 829 |
| Jouni Helske | j****e@l****e | 20 |
| sbgraves237 | s****s@e****g | 5 |
| localadmin | l****n@m****i | 2 |
| Helske | j****e@j****i | 2 |
| Kyle Husmann | k****n@g****m | 1 |
| Jouni Helske | j****1@l****e | 1 |
Committer Domains (Top 20 + Academic)
Issues and Pull Requests
Last synced: 5 months ago
All Time
- Total issues: 34
- Total pull requests: 4
- Average time to close issues: 8 months
- Average time to close pull requests: about 2 hours
- Total issue authors: 12
- Total pull request authors: 3
- Average comments per issue: 1.79
- Average comments per pull request: 1.0
- Merged pull requests: 4
- Bot issues: 0
- Bot pull requests: 0
Past Year
- Issues: 4
- Pull requests: 0
- Average time to close issues: 21 days
- Average time to close pull requests: N/A
- Issue authors: 2
- Pull request authors: 0
- Average comments per issue: 3.75
- Average comments per pull request: 0
- Merged pull requests: 0
- Bot issues: 0
- Bot pull requests: 0
Top Authors
Issue Authors
- helske (19)
- Lxr-China (2)
- khusmann (2)
- scottflaska (2)
- AEdlerfi (1)
- shubingtang (1)
- zaczw (1)
- rmendels (1)
- sbgraves237 (1)
- zjph602xtc (1)
- jgslazzaro (1)
- mpadge (1)
Pull Request Authors
- helske (2)
- khusmann (1)
- sbgraves237 (1)
Top Labels
Issue Labels
enhancement (4)
help wanted (1)
Pull Request Labels
Packages
- Total packages: 1
-
Total downloads:
- cran 863 last-month
- Total docker downloads: 21,777
- Total dependent packages: 1
- Total dependent repositories: 2
- Total versions: 28
- Total maintainers: 1
cran.r-project.org: bssm
Bayesian Inference of Non-Linear and Non-Gaussian State Space Models
- Homepage: https://github.com/helske/bssm
- Documentation: http://cran.r-project.org/web/packages/bssm/bssm.pdf
- License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
-
Latest release: 2.0.2
published about 2 years ago
Rankings
Forks count: 4.8%
Stargazers count: 8.2%
Downloads: 9.3%
Average: 12.0%
Docker downloads count: 12.5%
Dependent packages count: 18.1%
Dependent repos count: 19.2%
Maintainers (1)
Last synced:
5 months ago
Dependencies
DESCRIPTION
cran
- R >= 3.5.0 depends
- Rcpp >= 0.12.3 imports
- bayesplot * imports
- checkmate * imports
- coda >= 0.18 imports
- diagis * imports
- dplyr * imports
- magrittr * imports
- posterior * imports
- rlang * imports
- tidyr * imports
- KFAS >= 1.2.1 suggests
- MASS * suggests
- covr * suggests
- ggplot2 >= 2.0.0 suggests
- knitr >= 1.11 suggests
- ramcmc * suggests
- rmarkdown >= 0.8.1 suggests
- sde * suggests
- sitmo * suggests
- testthat * suggests
.github/workflows/R-CMD-check.yaml
actions
- actions/checkout v2 composite
- actions/upload-artifact main composite
- r-lib/actions/setup-pandoc v1 composite
- r-lib/actions/setup-r v1 composite
- r-lib/actions/setup-r-dependencies v1 composite