priorsense
priorsense: an R package for prior diagnostics and sensitivity
Science Score: 57.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
✓CITATION.cff file
Found CITATION.cff file -
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
✓DOI references
Found 6 DOI reference(s) in README -
○Academic publication links
-
○Committers with academic emails
-
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (14.1%) to scientific vocabulary
Keywords
Repository
priorsense: an R package for prior diagnostics and sensitivity
Basic Info
- Host: GitHub
- Owner: n-kall
- License: gpl-3.0
- Language: R
- Default Branch: main
- Homepage: https://n-kall.github.io/priorsense/
- Size: 10.6 MB
Statistics
- Stars: 64
- Watchers: 5
- Forks: 9
- Open Issues: 4
- Releases: 0
Topics
Metadata Files
README.md
priorsense
Overview
priorsense provides tools for prior diagnostics and sensitivity analysis.
It currently includes functions for performing power-scaling sensitivity analysis on Stan models. This is a way to check how sensitive a posterior is to perturbations of the prior and likelihood and diagnose the cause of sensitivity. For efficient computation, power-scaling sensitivity analysis relies on Pareto smoothed importance sampling (Vehtari et al., 2024) and importance weighted moment matching (Paananen et al., 2021).
Power-scaling sensitivity analysis and priorsense are described in Kallioinen et al. (2023).
Installation
Download the stable version from CRAN with:
r
install.packages("priorsense")
Download the development version from GitHub with:
``` r
install.packages("remotes")
remotes::install_github("n-kall/priorsense", ref = "development") ```
Usage
priorsense works with models created with rstan, cmdstanr, brms, R2jags, or with draws objects from the posterior package.
Example
Consider a simple univariate model with unknown mu and sigma fit to some
data y (available viaexample_powerscale_model("univariate_normal")):
stan
data {
int<lower=1> N;
array[N] real y;
}
parameters {
real mu;
real<lower=0> sigma;
}
model {
// priors
target += normal_lpdf(mu | 0, 1);
target += normal_lpdf(sigma | 0, 2.5);
// likelihood
target += normal_lpdf(y | mu, sigma);
}
generated quantities {
vector[N] log_lik;
real lprior;
// log likelihood
for (n in 1:N) log_lik[n] = normal_lpdf(y[n] | mu, sigma);
// joint log prior
lprior = normal_lpdf(mu | 0, 1) +
normal_lpdf(sigma | 0, 2.5);
We first fit the model using Stan:
``` r library(priorsense)
normalmodel <- examplepowerscalemodel("univariatenormal")
fit <- rstan::stan( modelcode = normalmodel$modelcode, data = normalmodel$data, refresh = FALSE, seed = 123 ) ```
Once fit, sensitivity can be checked as follows:
r
powerscale_sensitivity(fit)
Sensitivity based on cjs_dist
Prior selection: all priors
Likelihood selection: all data
variable prior likelihood diagnosis
mu 0.43 0.64 potential prior-data conflict
sigma 0.36 0.67 potential prior-data conflict
To visually inspect changes to the posterior, use one of the diagnostic plot functions. Estimates with high Pareto-k values may be inaccurate and are indicated.
r
powerscale_plot_dens(fit)

r
powerscale_plot_ecdf(fit)

r
powerscale_plot_quantities(fit)

In some cases, setting moment_match = TRUE will improve the unreliable
estimates at the cost of some further computation. This requires the
iwmm package.
Contributing
Contributions are welcome! If you find an bug or have an idea for a
feature, open an issue. If you are able to fix an issue, fork the
repository and make a pull request to the development branch.
References
Noa Kallioinen, Topi Paananen, Paul-Christian Bürkner, Aki Vehtari (2023). Detecting and diagnosing prior and likelihood sensitivity with power-scaling. Statistics and Computing. 34, 57. https://doi.org/10.1007/s11222-023-10366-5
Topi Paananen, Juho Piironen, Paul-Christian Bürkner, Aki Vehtari (2021). Implicitly adaptive importance sampling. Statistics and Computing 31, 16. https://doi.org/10.1007/s11222-020-09982-2
Aki Vehtari, Daniel Simpson, Andrew Gelman, Yuling Yao, Jonah Gabry (2024). Pareto smoothed importance sampling. Journal of Machine Learning Research. 25, 72. https://jmlr.org/papers/v25/19-556.html
Owner
- Login: n-kall
- Kind: user
- Repositories: 9
- Profile: https://github.com/n-kall
Citation (CITATION.cff)
cff-version: "1.2.0"
message: If you use this software, please cite our article in Statistics and Computing.
preferred-citation:
type: article
authors:
- family-names: Kallioinen
given-names: Noa
orcid: "https://orcid.org/0000-0003-1586-8382"
- family-names: Paananen
given-names: Topi
orcid: "https://orcid.org/0000-0002-6542-407X"
- family-names: Bürkner
given-names: Paul-Christian
orcid: "https://orcid.org/0000-0001-5765-8995"
- family-names: Vehtari
given-names: Aki
orcid: "https://orcid.org/0000-0003-2164-9469"
year: 2023
doi: 10.1007/s11222-023-10366-5
pages: 57
journal: Statistics and Computing
publisher:
name: Springer Nature
volume: 34
title: "Detecting and diagnosing prior and likelihood sensitivity with power-scaling"
url: "https://link.springer.com/article/10.1007/s11222-023-10366-5"
CodeMeta (codemeta.json)
{
"@context": "https://doi.org/10.5063/schema/codemeta-2.0",
"@type": "SoftwareSourceCode",
"identifier": "priorsense",
"description": "Provides functions for prior and likelihood sensitivity analysis in Bayesian models. Currently it implements methods to determine the sensitivity of the posterior to power-scaling perturbations of the prior and likelihood.",
"name": "priorsense: Prior Diagnostics and Sensitivity Analysis",
"relatedLink": [
"https://n-kall.github.io/priorsense/",
"https://CRAN.R-project.org/package=priorsense"
],
"codeRepository": "https://github.com/n-kall/priorsense",
"issueTracker": "https://github.com/n-kall/priorsense/issues",
"license": "https://spdx.org/licenses/GPL-3.0",
"version": "1.1.0",
"programmingLanguage": {
"@type": "ComputerLanguage",
"name": "R",
"url": "https://r-project.org"
},
"runtimePlatform": "R version 4.4.3 (2025-02-28)",
"provider": {
"@id": "https://cran.r-project.org",
"@type": "Organization",
"name": "Comprehensive R Archive Network (CRAN)",
"url": "https://cran.r-project.org"
},
"author": [
{
"@type": "Person",
"givenName": "Noa",
"familyName": "Kallioinen",
"email": "noa.kallioinen@aalto.fi"
},
{
"@type": "Person",
"givenName": "Topi",
"familyName": "Paananen"
},
{
"@type": "Person",
"givenName": "Paul-Christian",
"familyName": "Brkner"
},
{
"@type": "Person",
"givenName": "Aki",
"familyName": "Vehtari"
}
],
"contributor": [
{
"@type": "Person",
"givenName": "Frank",
"familyName": "Weber"
}
],
"copyrightHolder": [
{
"@type": "Person",
"givenName": "Noa",
"familyName": "Kallioinen",
"email": "noa.kallioinen@aalto.fi"
}
],
"maintainer": [
{
"@type": "Person",
"givenName": "Noa",
"familyName": "Kallioinen",
"email": "noa.kallioinen@aalto.fi"
}
],
"softwareSuggestions": [
{
"@type": "SoftwareApplication",
"identifier": "R2jags",
"name": "R2jags",
"version": ">= 0.8",
"provider": {
"@id": "https://cran.r-project.org",
"@type": "Organization",
"name": "Comprehensive R Archive Network (CRAN)",
"url": "https://cran.r-project.org"
},
"sameAs": "https://CRAN.R-project.org/package=R2jags"
},
{
"@type": "SoftwareApplication",
"identifier": "bayesplot",
"name": "bayesplot",
"version": ">= 1.11.1",
"provider": {
"@id": "https://cran.r-project.org",
"@type": "Organization",
"name": "Comprehensive R Archive Network (CRAN)",
"url": "https://cran.r-project.org"
},
"sameAs": "https://CRAN.R-project.org/package=bayesplot"
},
{
"@type": "SoftwareApplication",
"identifier": "brms",
"name": "brms",
"version": ">= 2.22.0",
"provider": {
"@id": "https://cran.r-project.org",
"@type": "Organization",
"name": "Comprehensive R Archive Network (CRAN)",
"url": "https://cran.r-project.org"
},
"sameAs": "https://CRAN.R-project.org/package=brms"
},
{
"@type": "SoftwareApplication",
"identifier": "cmdstanr",
"name": "cmdstanr",
"version": ">= 0.8.1"
},
{
"@type": "SoftwareApplication",
"identifier": "iwmm",
"name": "iwmm",
"version": ">= 0.0.1"
},
{
"@type": "SoftwareApplication",
"identifier": "quarto",
"name": "quarto",
"provider": {
"@id": "https://cran.r-project.org",
"@type": "Organization",
"name": "Comprehensive R Archive Network (CRAN)",
"url": "https://cran.r-project.org"
},
"sameAs": "https://CRAN.R-project.org/package=quarto"
},
{
"@type": "SoftwareApplication",
"identifier": "philentropy",
"name": "philentropy",
"version": ">= 0.8.0",
"provider": {
"@id": "https://cran.r-project.org",
"@type": "Organization",
"name": "Comprehensive R Archive Network (CRAN)",
"url": "https://cran.r-project.org"
},
"sameAs": "https://CRAN.R-project.org/package=philentropy"
},
{
"@type": "SoftwareApplication",
"identifier": "rstan",
"name": "rstan",
"version": ">= 2.32.6",
"provider": {
"@id": "https://cran.r-project.org",
"@type": "Organization",
"name": "Comprehensive R Archive Network (CRAN)",
"url": "https://cran.r-project.org"
},
"sameAs": "https://CRAN.R-project.org/package=rstan"
},
{
"@type": "SoftwareApplication",
"identifier": "testthat",
"name": "testthat",
"version": ">= 3.0.0",
"provider": {
"@id": "https://cran.r-project.org",
"@type": "Organization",
"name": "Comprehensive R Archive Network (CRAN)",
"url": "https://cran.r-project.org"
},
"sameAs": "https://CRAN.R-project.org/package=testthat"
},
{
"@type": "SoftwareApplication",
"identifier": "transport",
"name": "transport",
"version": ">= 0.15",
"provider": {
"@id": "https://cran.r-project.org",
"@type": "Organization",
"name": "Comprehensive R Archive Network (CRAN)",
"url": "https://cran.r-project.org"
},
"sameAs": "https://CRAN.R-project.org/package=transport"
}
],
"softwareRequirements": {
"1": {
"@type": "SoftwareApplication",
"identifier": "checkmate",
"name": "checkmate",
"version": ">= 2.3.1",
"provider": {
"@id": "https://cran.r-project.org",
"@type": "Organization",
"name": "Comprehensive R Archive Network (CRAN)",
"url": "https://cran.r-project.org"
},
"sameAs": "https://CRAN.R-project.org/package=checkmate"
},
"2": {
"@type": "SoftwareApplication",
"identifier": "ggdist",
"name": "ggdist",
"version": ">= 3.3.2",
"provider": {
"@id": "https://cran.r-project.org",
"@type": "Organization",
"name": "Comprehensive R Archive Network (CRAN)",
"url": "https://cran.r-project.org"
},
"sameAs": "https://CRAN.R-project.org/package=ggdist"
},
"3": {
"@type": "SoftwareApplication",
"identifier": "ggh4x",
"name": "ggh4x",
"version": ">= 0.2.5",
"provider": {
"@id": "https://cran.r-project.org",
"@type": "Organization",
"name": "Comprehensive R Archive Network (CRAN)",
"url": "https://cran.r-project.org"
},
"sameAs": "https://CRAN.R-project.org/package=ggh4x"
},
"4": {
"@type": "SoftwareApplication",
"identifier": "ggplot2",
"name": "ggplot2",
"version": ">= 3.5.1",
"provider": {
"@id": "https://cran.r-project.org",
"@type": "Organization",
"name": "Comprehensive R Archive Network (CRAN)",
"url": "https://cran.r-project.org"
},
"sameAs": "https://CRAN.R-project.org/package=ggplot2"
},
"5": {
"@type": "SoftwareApplication",
"identifier": "grDevices",
"name": "grDevices",
"version": ">= 3.6.2"
},
"6": {
"@type": "SoftwareApplication",
"identifier": "matrixStats",
"name": "matrixStats",
"version": ">= 1.3.0",
"provider": {
"@id": "https://cran.r-project.org",
"@type": "Organization",
"name": "Comprehensive R Archive Network (CRAN)",
"url": "https://cran.r-project.org"
},
"sameAs": "https://CRAN.R-project.org/package=matrixStats"
},
"7": {
"@type": "SoftwareApplication",
"identifier": "posterior",
"name": "posterior",
"version": ">= 1.6.0",
"provider": {
"@id": "https://cran.r-project.org",
"@type": "Organization",
"name": "Comprehensive R Archive Network (CRAN)",
"url": "https://cran.r-project.org"
},
"sameAs": "https://CRAN.R-project.org/package=posterior"
},
"8": {
"@type": "SoftwareApplication",
"identifier": "rlang",
"name": "rlang",
"version": ">= 1.1.4",
"provider": {
"@id": "https://cran.r-project.org",
"@type": "Organization",
"name": "Comprehensive R Archive Network (CRAN)",
"url": "https://cran.r-project.org"
},
"sameAs": "https://CRAN.R-project.org/package=rlang"
},
"9": {
"@type": "SoftwareApplication",
"identifier": "stats",
"name": "stats"
},
"10": {
"@type": "SoftwareApplication",
"identifier": "tibble",
"name": "tibble",
"version": ">= 3.2.1",
"provider": {
"@id": "https://cran.r-project.org",
"@type": "Organization",
"name": "Comprehensive R Archive Network (CRAN)",
"url": "https://cran.r-project.org"
},
"sameAs": "https://CRAN.R-project.org/package=tibble"
},
"11": {
"@type": "SoftwareApplication",
"identifier": "utils",
"name": "utils"
},
"12": {
"@type": "SoftwareApplication",
"identifier": "R",
"name": "R",
"version": ">= 3.6.0"
},
"SystemRequirements": null
},
"fileSize": "2273.618KB",
"citation": [
{
"@type": "ScholarlyArticle",
"datePublished": "2023",
"author": [
{
"@type": "Person",
"givenName": "Noa",
"familyName": "Kallioinen"
},
{
"@type": "Person",
"givenName": "Topi",
"familyName": "Paananen"
},
{
"@type": "Person",
"givenName": "Paul-Christian",
"familyName": "Brkner"
},
{
"@type": "Person",
"givenName": "Aki",
"familyName": "Vehtari"
}
],
"name": "Detecting and diagnosing prior and likelihood sensitivity with power-scaling",
"identifier": "10.1007/s11222-023-10366-5",
"@id": "https://doi.org/10.1007/s11222-023-10366-5",
"sameAs": "https://doi.org/10.1007/s11222-023-10366-5",
"isPartOf": {
"@type": "PublicationIssue",
"datePublished": "2023",
"isPartOf": {
"@type": [
"PublicationVolume",
"Periodical"
],
"volumeNumber": "34",
"name": "Statistics and Computing"
}
}
},
{
"@type": "ScholarlyArticle",
"datePublished": "2024",
"author": [
{
"@type": "Person",
"givenName": "Aki",
"familyName": "Vehtari"
},
{
"@type": "Person",
"givenName": "Daniel",
"familyName": "Simpson"
},
{
"@type": "Person",
"givenName": "Andrew",
"familyName": "Gelman"
},
{
"@type": "Person",
"givenName": "Yuling",
"familyName": "Yao"
},
{
"@type": "Person",
"givenName": "Jonah",
"familyName": "Gabry"
}
],
"name": "Pareto smoothed importance sampling",
"isPartOf": {
"@type": "PublicationIssue",
"datePublished": "2024",
"isPartOf": {
"@type": [
"PublicationVolume",
"Periodical"
],
"volumeNumber": "25",
"name": "Journal of Machine Learning Research"
}
}
},
{
"@type": "ScholarlyArticle",
"datePublished": "2021",
"author": [
{
"@type": "Person",
"givenName": "Topi",
"familyName": "Paananen"
},
{
"@type": "Person",
"givenName": "Juho",
"familyName": "Piironen"
},
{
"@type": "Person",
"givenName": "Paul-Christian",
"familyName": "Brkner"
},
{
"@type": "Person",
"givenName": "Aki",
"familyName": "Vehtari"
}
],
"name": "Implicitly adaptive importance sampling",
"identifier": "10.1007/s11222-020-09982-2",
"pagination": "1--19",
"@id": "https://doi.org/10.1007/s11222-020-09982-2",
"sameAs": "https://doi.org/10.1007/s11222-020-09982-2",
"isPartOf": {
"@type": "PublicationIssue",
"datePublished": "2021",
"isPartOf": {
"@type": [
"PublicationVolume",
"Periodical"
],
"volumeNumber": "31",
"name": "Statistics and Computing"
}
}
}
],
"releaseNotes": "https://github.com/n-kall/priorsense/blob/master/NEWS.md",
"readme": "https://github.com/n-kall/priorsense/blob/main/README.md",
"contIntegration": "https://github.com/n-kall/priorsense/actions",
"developmentStatus": "https://lifecycle.r-lib.org/articles/stages.html#stable",
"keywords": [
"bayesian-data-analysis",
"bayesian-methods",
"prior-distribution",
"r-package",
"sensitivity-analysis",
"stan",
"bayesian",
"r",
"bayes"
]
}
GitHub Events
Total
- Issues event: 22
- Watch event: 8
- Delete event: 8
- Issue comment event: 16
- Push event: 123
- Pull request event: 46
- Fork event: 4
- Create event: 9
Last Year
- Issues event: 22
- Watch event: 8
- Delete event: 8
- Issue comment event: 16
- Push event: 123
- Pull request event: 46
- Fork event: 4
- Create event: 9
Committers
Last synced: 9 months ago
Top Committers
| Name | Commits | |
|---|---|---|
| n-kall | n****l@g****m | 390 |
| n-kall | 3****l | 117 |
| fweber144 | f****4@p****m | 14 |
| Rantaharju Jarno | j****u@a****i | 12 |
| Andrew Johnson | a****n@a****m | 7 |
| Sam A.S. Welch | 1****A | 3 |
| Andrey Akinshin | a****n@g****m | 1 |
Committer Domains (Top 20 + Academic)
Issues and Pull Requests
Last synced: 6 months ago
All Time
- Total issues: 34
- Total pull requests: 86
- Average time to close issues: 7 months
- Average time to close pull requests: 10 days
- Total issue authors: 14
- Total pull request authors: 8
- Average comments per issue: 1.71
- Average comments per pull request: 0.09
- Merged pull requests: 72
- Bot issues: 0
- Bot pull requests: 0
Past Year
- Issues: 12
- Pull requests: 52
- Average time to close issues: about 1 month
- Average time to close pull requests: 2 days
- Issue authors: 3
- Pull request authors: 3
- Average comments per issue: 1.17
- Average comments per pull request: 0.0
- Merged pull requests: 41
- Bot issues: 0
- Bot pull requests: 0
Top Authors
Issue Authors
- n-kall (14)
- avehtari (4)
- rantahar (2)
- jflournoy (2)
- paul-buerkner (2)
- maxbiostat (1)
- dirknbr (1)
- fweber144 (1)
- TeemuSailynoja (1)
- Sandhu-SS (1)
- AndHofma (1)
- bcs-alexander (1)
- lcgodoy (1)
- fraupflaume (1)
- cmgoold (1)
Pull Request Authors
- n-kall (99)
- samawelch (6)
- rantahar (3)
- AndreyAkinshin (2)
- GiorgioMB (2)
- andrjohns (1)
- harris-yh-wong (1)
- fweber144 (1)
Top Labels
Issue Labels
Pull Request Labels
Packages
- Total packages: 1
-
Total downloads:
- cran 1,429 last-month
- Total dependent packages: 0
- Total dependent repositories: 0
- Total versions: 7
- Total maintainers: 1
cran.r-project.org: priorsense
Prior Diagnostics and Sensitivity Analysis
- Homepage: https://github.com/n-kall/priorsense
- Documentation: http://cran.r-project.org/web/packages/priorsense/priorsense.pdf
- License: GPL (≥ 3)
-
Latest release: 1.1.1
published 6 months ago
Rankings
Maintainers (1)
Dependencies
- R >= 3.6.0 depends
- cetcolor * imports
- checkmate * imports
- ggplot2 * imports
- loo * imports
- matrixStats * imports
- methods * imports
- philentropy * imports
- posterior * imports
- stats * imports
- tibble * imports
- transport * imports
- utils * imports
- brms * suggests
- knitr * suggests
- rmarkdown * suggests
- rstan * suggests
- testthat >= 3.0.0 suggests
- actions/checkout v2 composite
- n1hility/cancel-previous-runs v2 composite
- r-lib/actions/check-r-package v2 composite
- r-lib/actions/setup-pandoc v2 composite
- r-lib/actions/setup-r v2 composite
- r-lib/actions/setup-r-dependencies v2 composite
- actions/checkout v2 composite
- n1hility/cancel-previous-runs v2 composite
- r-lib/actions/setup-pandoc v2 composite
- r-lib/actions/setup-r v2 composite
- r-lib/actions/setup-r-dependencies v2 composite