Science Score: 77.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
✓CITATION.cff file
Found CITATION.cff file -
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
✓DOI references
Found 7 DOI reference(s) in README -
✓Academic publication links
Links to: zenodo.org -
✓Committers with academic emails
1 of 4 committers (25.0%) from academic institutions -
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (12.9%) to scientific vocabulary
Keywords
Repository
Hierarchical Climate Regionalization
Basic Info
- Host: GitHub
- Owner: hsbadr
- License: gpl-3.0
- Language: R
- Default Branch: master
- Homepage: https://hsbadr.github.io/HiClimR/
- Size: 7.06 MB
Statistics
- Stars: 16
- Watchers: 4
- Forks: 8
- Open Issues: 2
- Releases: 18
Topics
Metadata Files
README.md
HiClimR
HiClimR: Hierarchical Climate Regionalization
Table of Contents
Introduction
HiClimR is a tool for Hierarchical Climate Regionalization applicable to any correlation-based clustering. Climate regionalization is the process of dividing an area into smaller regions that are homogeneous with respect to a specified climatic metric. Several features are added to facilitate the applications of climate regionalization (or spatiotemporal analysis in general) and to implement a cluster validation function with an objective tree cutting to find an optimal number of clusters for a user-specified confidence level. These include options for preprocessing and postprocessing as well as efficient code execution for large datasets and options for splitting big data and computing only the upper-triangular half of the correlation/dissimilarity matrix to overcome memory limitations. Hybrid hierarchical clustering reconstructs the upper part of the tree above a cut to get the best of the available methods. Multivariate clustering (MVC) provides options for filtering all variables before preprocessing, detrending and standardization of each variable, and applying weights for the preprocessed variables.
Features
HiClimR adds several features and a new clustering method (called, regional linkage) to hierarchical clustering in R (hclust function in stats library) including:
- data regridding
- coarsening spatial resolution
- geographic masking
- by continents
- by regions
- by countries
- contiguity-constrained clustering
- data filtering by thresholds
- mean threshold
- variance threshold
- data preprocessing
- detrending
- standardization
- PCA
- faster correlation function
- splitting big data matrix
- computing upper-triangular matrix
- using optimized
BLASlibrary on 64-Bit machinesATLASOpenBLASIntel MKL
- different clustering methods
regionallinkage or minimum inter-regional correlationward's minimum variance or error sum of squares methodsinglelinkage or nearest neighbor methodcompletelinkage or diameteraveragelinkage, group average, or UPGMA methodmcquitty's or WPGMA methodmedian, Gower's or WPGMC methodcentroidor UPGMC method
- hybrid hierarchical clustering
- the upper part of the tree is reconstructed above a cut
- the lower part of the tree uses user-selected method
- the upper part of the tree uses
regionallinkage method
- multivariate clustering (MVC)
- filtering all variables before preprocessing
- detrending and standardization of each variable
- applying weight for the preprocessed variables
- cluster validation
- summary statistics based on raw data or the data reconstructed by PCA
- objective tree cut using minimum significant correlation between region means
- visualization of regionalization results
- exporting region map and mean timeseries into NetCDF-4
The regional linkage method is explained in the context of a spatiotemporal problem, in which N spatial elements (e.g., weather stations) are divided into k regions, given that each element has a time series of length M. It is based on inter-regional correlation distance between the temporal means of different regions (or elements at the first merging step). It modifies the update formulae of average linkage method by incorporating the standard deviation of the merged region timeseries, which is a function of the correlation between the individual regions, and their standard deviations before merging. It is equal to the average of their standard deviations if and only if the correlation between the two merged regions is 100%. In this special case, the regional linkage method is reduced to the classic average linkage clustering method.
Implementation
Badr et al. (2015) describes the regionalization algorithms, features, and data processing tools included in the package and presents a demonstration application in which the package is used to regionalize Africa on the basis of interannual precipitation variability. The figure below shows a detailed flowchart for the package. Cyan blocks represent helper functions, green is input data or parameters, yellow indicates agglomeration Fortran code, and purple shows graphics options. For multivariate clustering (MVC), the input data is a list of matrices (one matrix for each variable with the same number of rows to be clustered; the number of columns may vary per variable). The blue dashed boxes involve a loop for all variables to apply mean and/or variance thresholds, detrending, and/or standardization per variable before weighing the preprocessed variables and binding them by columns in one matrix for clustering. x is the input N x M data matrix, xc is the coarsened N0 x M data matrix where N0 ≤ N (N0 = N only if lonStep = 1 and latStep = 1), xm is the masked and filtered N1 x M1 data matrix where N1 ≤ N0 (N1 = N0 only if the number of masked stations/points is zero) and M1 ≤ M (M1 = M only if no columns are removed due to missing values), and x1 is the reconstructed N1 x M1 data matrix if PCA is performed.

HiClimR is applicable to any correlation-based clustering.
Installation
There are many ways to install an R package from precompiled binaries or source code. For more details, you may search for how to install an R package, but here are the most convenient ways to install HiClimR:
From CRAN
This is the easiest way to install an R package on Windows, Mac, or Linux. You just fire up an R shell and type:
R
install.packages("HiClimR")
In theory the package should just install, however, you may be asked to select your local mirror (i.e. which server should you use to download the package). If you are using R-GUI or R-Studio, you can find a menu for package installation where you can just search for HiClimR and install it.
From GitHub
This is intended for developers and requires a development environment (compilers, libraries, ... etc) to install the latest development release of HiClimR. On Linux and Mac, you can download the source code and use R CMD INSTALL to install it. In a convenient way, you may use pak as follows:
- Install
pakfrom CRAN:
R
install.packages("pak")
Make sure you have a working development environment:
- Windows: Install
Rtools. - Mac: Install Xcode from the Mac App Store.
- Linux: Install a compiler and various development libraries (details vary across different flavors of Linux).
- Windows: Install
Install
HiClimRfrom GitHub source:
R
pak::pkg_install("hsbadr/HiClimR")
Source
The source code repository can be found on GitHub at hsbadr/HiClimR.
License
HiClimR is licensed under GPL v3. The code is modified by Hamada S. Badr from src/library/stats/R/hclust.R part of R package Copyright © 1995-2021 The R Core Team.
This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
A copy of the GNU General Public License is available at https://www.r-project.org/Licenses.
Copyright © 2013-2021 Earth and Planetary Sciences (EPS), Johns Hopkins University (JHU).
Citation
To cite HiClimR in publications, please use:
R
citation("HiClimR")
Hamada S. Badr, Zaitchik, B. F. and Dezfuli, A. K. (2015): A Tool for Hierarchical Climate Regionalization, Earth Science Informatics, 8(4), 949-958, https://doi.org/10.1007/s12145-015-0221-7.
Hamada S. Badr, Zaitchik, B. F. and Dezfuli, A. K. (2014): HiClimR: Hierarchical Climate Regionalization, Comprehensive R Archive Network (CRAN), https://cran.r-project.org/package=HiClimR.
History
| Version | Date | Comment | Author | Email | |:-------------:|:------------:|:-------------:|:----------------:|:--------------:| | | May 1992 | Original | F. Murtagh | | | | Dec 1996 | Modified | Ross Ihaka | | | | Apr 1998 | Modified | F. Leisch | | | | Jun 2000 | Modified | F. Leisch | | | 1.0.0 | 03/07/14 | HiClimR | Hamada S. Badr | badr@jhu.edu | | 1.0.1 | 03/08/14 | Updated | Hamada S. Badr | badr@jhu.edu | | 1.0.2 | 03/09/14 | Updated | Hamada S. Badr | badr@jhu.edu | | 1.0.3 | 03/12/14 | Updated | Hamada S. Badr | badr@jhu.edu | | 1.0.4 | 03/14/14 | Updated | Hamada S. Badr | badr@jhu.edu | | 1.0.5 | 03/18/14 | Updated | Hamada S. Badr | badr@jhu.edu | | 1.0.6 | 03/25/14 | Updated | Hamada S. Badr | badr@jhu.edu | | 1.0.7 | 03/30/14 | Hybrid | Hamada S. Badr | badr@jhu.edu | | 1.0.8 | 05/06/14 | Updated | Hamada S. Badr | badr@jhu.edu | | 1.0.9 | 05/07/14 | CRAN | Hamada S. Badr | badr@jhu.edu | | 1.1.0 | 05/15/14 | Updated | Hamada S. Badr | badr@jhu.edu | | 1.1.1 | 07/14/14 | Updated | Hamada S. Badr | badr@jhu.edu | | 1.1.2 | 07/26/14 | Updated | Hamada S. Badr | badr@jhu.edu | | 1.1.3 | 08/28/14 | Updated | Hamada S. Badr | badr@jhu.edu | | 1.1.4 | 09/01/14 | Updated | Hamada S. Badr | badr@jhu.edu | | 1.1.5 | 11/12/14 | Updated | Hamada S. Badr | badr@jhu.edu | | 1.1.6 | 03/01/15 | GitHub | Hamada S. Badr | badr@jhu.edu | | 1.2.0 | 03/27/15 | MVC | Hamada S. Badr | badr@jhu.edu | | 1.2.1 | 05/24/15 | Updated | Hamada S. Badr | badr@jhu.edu | | 1.2.2 | 07/21/15 | Updated | Hamada S. Badr | badr@jhu.edu | | 1.2.3 | 08/05/15 | Updated | Hamada S. Badr | badr@jhu.edu | | 2.0.0 | 12/22/18 | NOTE | Hamada S. Badr | badr@jhu.edu | | 2.1.0 | 01/01/19 | NetCDF | Hamada S. Badr | badr@jhu.edu | | 2.1.1 | 01/02/19 | Updated | Hamada S. Badr | badr@jhu.edu | | 2.1.2 | 01/04/19 | Updated | Hamada S. Badr | badr@jhu.edu | | 2.1.3 | 01/10/19 | Updated | Hamada S. Badr | badr@jhu.edu | | 2.1.4 | 01/20/19 | Updated | Hamada S. Badr | badr@jhu.edu | | 2.1.5 | 12/10/19 | inherits | Hamada S. Badr | badr@jhu.edu | | 2.1.6 | 02/22/20 | Updated | Hamada S. Badr | badr@jhu.edu | | 2.1.7 | 11/05/20 | Updated | Hamada S. Badr | badr@jhu.edu | | 2.1.8 | 01/04/21 | Updated | Hamada S. Badr | badr@jhu.edu |
Examples
Single-Variate Clustering
R
library(HiClimR)
```R
----------------------------------------------------------------------------------
Typical use of HiClimR for single-variate clustering:
----------------------------------------------------------------------------------
Load the test data included/loaded in the package (1 degree resolution)
x <- TestCase$x lon <- TestCase$lon lat <- TestCase$lat
Generate/check longitude and latitude mesh vectors for gridded data
xGrid <- grid2D(lon = unique(TestCase$lon), lat = unique(TestCase$lat)) lon <- c(xGrid$lon) lat <- c(xGrid$lat)
Single-Variate Hierarchical Climate Regionalization
y <- HiClimR(x, lon = lon, lat = lat, lonStep = 1, latStep = 1, geogMask = FALSE,
continent = "Africa", meanThresh = 10, varThresh = 0, detrend = TRUE,
standardize = TRUE, nPC = NULL, method = "ward", hybrid = FALSE, kH = NULL,
members = NULL, nSplit = 1, upperTri = TRUE, verbose = TRUE,
validClimR = TRUE, k = 12, minSize = 1, alpha = 0.01,
plot = TRUE, colPalette = NULL, hang = -1, labels = FALSE)
R
----------------------------------------------------------------------------------
Additional Examples:
----------------------------------------------------------------------------------
Use Ward's method
y <- HiClimR(x, lon = lon, lat = lat, lonStep = 1, latStep = 1, geogMask = FALSE, continent = "Africa", meanThresh = 10, varThresh = 0, detrend = TRUE, standardize = TRUE, nPC = NULL, method = "ward", hybrid = FALSE, kH = NULL, members = NULL, nSplit = 1, upperTri = TRUE, verbose = TRUE, validClimR = TRUE, k = 5, minSize = 1, alpha = 0.01, plot = TRUE, colPalette = NULL, hang = -1, labels = FALSE)
Use data splitting for big data
y <- HiClimR(x, lon = lon, lat = lat, lonStep = 1, latStep = 1, geogMask = FALSE, continent = "Africa", meanThresh = 10, varThresh = 0, detrend = TRUE, standardize = TRUE, nPC = NULL, method = "ward", hybrid = TRUE, kH = NULL, members = NULL, nSplit = 10, upperTri = TRUE, verbose = TRUE, validClimR = TRUE, k = 12, minSize = 1, alpha = 0.01, plot = TRUE, colPalette = NULL, hang = -1, labels = FALSE)
Use hybrid Ward-Regional method
y <- HiClimR(x, lon = lon, lat = lat, lonStep = 1, latStep = 1, geogMask = FALSE, continent = "Africa", meanThresh = 10, varThresh = 0, detrend = TRUE, standardize = TRUE, nPC = NULL, method = "ward", hybrid = TRUE, kH = NULL, members = NULL, nSplit = 1, upperTri = TRUE, verbose = TRUE, validClimR = TRUE, k = 12, minSize = 1, alpha = 0.01, plot = TRUE, colPalette = NULL, hang = -1, labels = FALSE)
Check senitivity to kH for the hybrid method above
``` ⇪
Multivariate Clustering
```R
----------------------------------------------------------------------------------
Typical use of HiClimR for multivariate clustering:
----------------------------------------------------------------------------------
Load the test data included/loaded in the package (1 degree resolution)
x1 <- TestCase$x lon <- TestCase$lon lat <- TestCase$lat
## Generate/check longitude and latitude mesh vectors for gridded data xGrid <- grid2D(lon = unique(TestCase$lon), lat = unique(TestCase$lat)) lon <- c(xGrid$lon) lat <- c(xGrid$lat)
Test if we can replicate single-variate region map with repeated variable
y <- HiClimR(x=list(x1, x1), lon = lon, lat = lat, lonStep = 1, latStep = 1, geogMask = FALSE, continent = "Africa", meanThresh = list(10, 10), varThresh = list(0, 0), detrend = list(TRUE, TRUE), standardize = list(TRUE, TRUE), nPC = NULL, method = "ward", hybrid = FALSE, kH = NULL, members = NULL, nSplit = 1, upperTri = TRUE, verbose = TRUE, validClimR = TRUE, k = 12, minSize = 1, alpha = 0.01, plot = TRUE, colPalette = NULL, hang = -1, labels = FALSE)
Generate a random matrix with the same number of rows
x2 <- matrix(rnorm(nrow(x1) * 100, mean=0, sd=1), nrow(x1), 100)
Multivariate Hierarchical Climate Regionalization
y <- HiClimR(x=list(x1, x2), lon = lon, lat = lat, lonStep = 1, latStep = 1, geogMask = FALSE, continent = "Africa", meanThresh = list(10, NULL), varThresh = list(0, 0), detrend = list(TRUE, FALSE), standardize = list(TRUE, TRUE), weightMVC = list(1, 1), nPC = NULL, method = "ward", hybrid = FALSE, kH = NULL, members = NULL, nSplit = 1, upperTri = TRUE, verbose = TRUE, validClimR = TRUE, k = 12, minSize = 1, alpha = 0.01, plot = TRUE, colPalette = NULL, hang = -1, labels = FALSE)
You can apply all clustering methods and options
```
Miscellaneous Examples
```R
----------------------------------------------------------------------------------
Miscellaneous examples to provide more information about functionality and usage
of the helper functions that can be used separately or for other applications.
----------------------------------------------------------------------------------
Load test case data
x <- TestCase$x
Generate longitude and latitude mesh vectors
xGrid <- grid2D(lon = unique(TestCase$lon), lat = unique(TestCase$lat)) lon <- c(xGrid$lon) lat <- c(xGrid$lat)
Coarsening spatial resolution
xc <- coarseR(x = x, lon = lon, lat = lat, lonStep = 2, latStep = 2) lon <- xc$lon lat <- xc$lat x <- xc$x
Use fastCor function to compute the correlation matrix
t0 <- proc.time(); xcor <- fastCor(t(x)); proc.time() - t0
compare with cor function
t0 <- proc.time(); xcor0 <- cor(t(x)); proc.time() - t0
Check the valid options for geographic masking
geogMask()
geographic mask for Africa
gMask <- geogMask(continent = "Africa", lon = lon, lat = lat, plot = TRUE, colPalette = NULL)
Hierarchical Climate Regionalization Without geographic masking
y <- HiClimR(x, lon = lon, lat = lat, lonStep = 1, latStep = 1, geogMask = FALSE, continent = "Africa", meanThresh = 10, varThresh = 0, detrend = TRUE, standardize = TRUE, nPC = NULL, method = "ward", hybrid = FALSE, kH = NULL, members = NULL, nSplit = 1, upperTri = TRUE, verbose = TRUE, validClimR = TRUE, k = 12, minSize = 1, alpha = 0.01, plot = TRUE, colPalette = NULL, hang = -1, labels = FALSE)
With geographic masking (you may specify the mask produced above to save time)
y <- HiClimR(x, lon = lon, lat = lat, lonStep = 1, latStep = 1, geogMask = TRUE, continent = "Africa", meanThresh = 10, varThresh = 0, detrend = TRUE, standardize = TRUE, nPC = NULL, method = "ward", hybrid = FALSE, kH = NULL, members = NULL, nSplit = 1, upperTri = TRUE, verbose = TRUE, validClimR = TRUE, k = 12, minSize = 1, alpha = 0.01, plot = TRUE, colPalette = NULL, hang = -1, labels = FALSE)
With geographic masking and contiguity constraint
Change contigConst as appropriate
y <- HiClimR(x, lon = lon, lat = lat, lonStep = 1, latStep = 1, geogMask = TRUE, continent = "Africa", contigConst = 1, meanThresh = 10, varThresh = 0, detrend = TRUE, standardize = TRUE, nPC = NULL, method = "ward", hybrid = FALSE, kH = NULL, members = NULL, nSplit = 1, upperTri = TRUE, verbose = TRUE, validClimR = TRUE, k = 12, minSize = 1, alpha = 0.01, plot = TRUE, colPalette = NULL, hang = -1, labels = FALSE)
Find minimum significant correlation at 95% confidence level
rMin <- minSigCor(n = nrow(x), alpha = 0.05, r = seq(0, 1, by = 1e-06))
Validtion of Hierarchical Climate Regionalization
z <- validClimR(y, k = 12, minSize = 1, alpha = 0.01, plot = TRUE, colPalette = NULL)
Apply minimum cluster size (minSize = 25)
z <- validClimR(y, k = 12, minSize = 25, alpha = 0.01, plot = TRUE, colPalette = NULL)
The optimal number of clusters, including small clusters
k <- length(z$clustFlag)
The selected number of clusters, after excluding small clusters (if minSize > 1)
ks <- sum(z$clustFlag)
Dendrogram plot
plot(y, hang = -1, labels = FALSE)
Tree cut
cutTree <- cutree(y, k = k) table(cutTree)
Visualization for gridded data
RegionsMap <- matrix(y$region, nrow = length(unique(y$coords[, 1])), byrow = TRUE) colPalette <- colorRampPalette(c("#00007F", "blue", "#007FFF", "cyan", "#7FFF7F", "yellow", "#FF7F00", "red", "#7F0000")) image(unique(y$coords[, 1]), unique(y$coords[, 2]), RegionsMap, col = colPalette(ks))
Visualization for gridded or ungridded data
plot(y$coords[, 1], y$coords[, 2], col = colPalette(max(y$region, na.rm = TRUE))[y$region], pch = 15, cex = 1)
Change pch and cex as appropriate!
Export region map and mean timeseries into NetCDF-4 file
library(ncdf4) y.nc <- HiClimR2nc(y=y, ncfile="HiClimR.nc", timeunit="years", dataunit="mm")
The NetCDF-4 file is still open to add other variables or close it
nc_close(y.nc)
```
Owner
- Name: Hamada S. Badr
- Login: hsbadr
- Kind: user
- Location: Washington, District of Columbia
- Company: Amazon Web Services (AWS)
- Website: https://hsbadr.github.io
- Repositories: 29
- Profile: https://github.com/hsbadr
Senior Applied Scientist
Citation (CITATION.cff)
# --------------------------------------------
# CITATION file created with {cffr} R package
# See also: https://docs.ropensci.org/cffr/
# --------------------------------------------
cff-version: 1.2.0
message: 'To cite package "HiClimR" in publications use:'
type: software
license: GPL-3.0-only
title: 'HiClimR: Hierarchical Climate Regionalization'
version: 2.2.1
doi: 10.1007/s12145-015-0221-7
identifiers:
- type: doi
value: 10.32614/CRAN.package.HiClimR
abstract: 'A tool for Hierarchical Climate Regionalization applicable to any correlation-based
clustering. It adds several features and a new clustering method (called, ''regional''
linkage) to hierarchical clustering in R (''hclust'' function in ''stats'' library):
data regridding, coarsening spatial resolution, geographic masking, contiguity-constrained
clustering, data filtering by mean and/or variance thresholds, data preprocessing
(detrending, standardization, and PCA), faster correlation function with preliminary
big data support, different clustering methods, hybrid hierarchical clustering,
multivariate clustering (MVC), cluster validation, visualization of regionalization
results, and exporting region map and mean timeseries into NetCDF-4 file. The technical
details are described in Badr et al. (2015) <https://doi.org/10.1007/s12145-015-0221-7>.'
authors:
- family-names: Badr
given-names: Hamada S.
email: badr@jhu.edu
orcid: https://orcid.org/0000-0002-9808-2344
- family-names: Zaitchik
given-names: Benjamin F.
email: zaitchik@jhu.edu
orcid: https://orcid.org/0000-0002-0698-0658
- family-names: Dezfuli
given-names: Amin K.
email: amin.dezfuli@nasa.gov
orcid: https://orcid.org/0000-0003-3274-8542
preferred-citation:
type: article
title: A Tool for Hierarchical Climate Regionalization
authors:
- family-names: Badr
given-names: Hamada S.
email: badr@jhu.edu
orcid: https://orcid.org/0000-0002-9808-2344
- family-names: Zaitchik
given-names: Benjamin F.
email: zaitchik@jhu.edu
orcid: https://orcid.org/0000-0002-0698-0658
- family-names: Dezfuli
given-names: Amin K.
email: amin.dezfuli@nasa.gov
orcid: https://orcid.org/0000-0003-3274-8542
year: '2015'
journal: Earth Science Informatics
publisher:
name: Springer
volume: '8'
issue: '4'
doi: 10.1007/s12145-015-0221-7
url: https://doi.org/10.1007/s12145-015-0221-7
start: '949'
end: '958'
repository: https://CRAN.R-project.org/package=HiClimR
repository-code: https://github.com/hsbadr/HiClimR
url: https://hsbadr.github.io/HiClimR/
contact:
- family-names: Badr
given-names: Hamada S.
email: badr@jhu.edu
orcid: https://orcid.org/0000-0002-9808-2344
keywords:
- clustering
- contiguity
- homogeneity
- multivariate
- r
- regionalization
- spatiotemporal
references:
- type: manual
title: 'HiClimR: Hierarchical Climate Regionalization'
authors:
- family-names: Badr
given-names: Hamada S.
email: badr@jhu.edu
orcid: https://orcid.org/0000-0002-9808-2344
- family-names: Zaitchik
given-names: Benjamin F.
email: zaitchik@jhu.edu
orcid: https://orcid.org/0000-0002-0698-0658
- family-names: Dezfuli
given-names: Amin K.
email: amin.dezfuli@nasa.gov
orcid: https://orcid.org/0000-0003-3274-8542
year: '2014'
journal: Comprehensive R Archive Network (CRAN)
url: https://cran.r-project.org/package=HiClimR
- type: software
title: 'R: A Language and Environment for Statistical Computing'
notes: Depends
url: https://www.R-project.org/
authors:
- name: R Core Team
institution:
name: 'R Foundation for Statistical Computing (ROR: <https://ror.org/05qewa988>)'
address: Vienna, Austria
year: '2025'
doi: 10.32614/R.manuals
version: '>= 2.10'
- type: software
title: graphics
abstract: 'R: A Language and Environment for Statistical Computing'
notes: Imports
authors:
- name: R Core Team
institution:
name: 'R Foundation for Statistical Computing (ROR: <https://ror.org/05qewa988>)'
address: Vienna, Austria
year: '2025'
doi: 10.32614/R.manuals
- type: software
title: grDevices
abstract: 'R: A Language and Environment for Statistical Computing'
notes: Imports
authors:
- name: R Core Team
institution:
name: 'R Foundation for Statistical Computing (ROR: <https://ror.org/05qewa988>)'
address: Vienna, Austria
year: '2025'
doi: 10.32614/R.manuals
- type: software
title: stats
abstract: 'R: A Language and Environment for Statistical Computing'
notes: Imports
authors:
- name: R Core Team
institution:
name: 'R Foundation for Statistical Computing (ROR: <https://ror.org/05qewa988>)'
address: Vienna, Austria
year: '2025'
doi: 10.32614/R.manuals
- type: software
title: utils
abstract: 'R: A Language and Environment for Statistical Computing'
notes: Imports
authors:
- name: R Core Team
institution:
name: 'R Foundation for Statistical Computing (ROR: <https://ror.org/05qewa988>)'
address: Vienna, Austria
year: '2025'
doi: 10.32614/R.manuals
- type: software
title: ncdf4
abstract: 'ncdf4: Interface to Unidata netCDF (Version 4 or Earlier) Format Data
Files'
notes: Imports
url: https://cirrus.ucsd.edu/~pierce/ncdf/
repository: https://CRAN.R-project.org/package=ncdf4
authors:
- family-names: Pierce
given-names: David
email: dpierce@ucsd.edu
orcid: https://orcid.org/0000-0002-2453-9030
year: '2025'
doi: 10.32614/CRAN.package.ncdf4
- type: software
title: covr
abstract: 'covr: Test Coverage for Packages'
notes: Suggests
url: https://covr.r-lib.org
repository: https://CRAN.R-project.org/package=covr
authors:
- family-names: Hester
given-names: Jim
email: james.f.hester@gmail.com
year: '2025'
doi: 10.32614/CRAN.package.covr
- type: software
title: devtools
abstract: 'devtools: Tools to Make Developing R Packages Easier'
notes: Suggests
url: https://devtools.r-lib.org/
repository: https://CRAN.R-project.org/package=devtools
authors:
- family-names: Wickham
given-names: Hadley
- family-names: Hester
given-names: Jim
- family-names: Chang
given-names: Winston
- family-names: Bryan
given-names: Jennifer
email: jenny@rstudio.com
orcid: https://orcid.org/0000-0002-6983-2759
year: '2025'
doi: 10.32614/CRAN.package.devtools
- type: software
title: knitr
abstract: 'knitr: A General-Purpose Package for Dynamic Report Generation in R'
notes: Suggests
url: https://yihui.org/knitr/
repository: https://CRAN.R-project.org/package=knitr
authors:
- family-names: Xie
given-names: Yihui
email: xie@yihui.name
orcid: https://orcid.org/0000-0003-0645-5666
year: '2025'
doi: 10.32614/CRAN.package.knitr
- type: software
title: rmarkdown
abstract: 'rmarkdown: Dynamic Documents for R'
notes: Suggests
url: https://pkgs.rstudio.com/rmarkdown/
repository: https://CRAN.R-project.org/package=rmarkdown
authors:
- family-names: Allaire
given-names: JJ
email: jj@posit.co
- family-names: Xie
given-names: Yihui
email: xie@yihui.name
orcid: https://orcid.org/0000-0003-0645-5666
- family-names: Dervieux
given-names: Christophe
email: cderv@posit.co
orcid: https://orcid.org/0000-0003-4474-2498
- family-names: McPherson
given-names: Jonathan
email: jonathan@posit.co
- family-names: Luraschi
given-names: Javier
- family-names: Ushey
given-names: Kevin
email: kevin@posit.co
- family-names: Atkins
given-names: Aron
email: aron@posit.co
- family-names: Wickham
given-names: Hadley
email: hadley@posit.co
- family-names: Cheng
given-names: Joe
email: joe@posit.co
- family-names: Chang
given-names: Winston
email: winston@posit.co
- family-names: Iannone
given-names: Richard
email: rich@posit.co
orcid: https://orcid.org/0000-0003-3925-190X
year: '2025'
doi: 10.32614/CRAN.package.rmarkdown
- type: software
title: roxygen2
abstract: 'roxygen2: In-Line Documentation for R'
notes: Suggests
url: https://roxygen2.r-lib.org/
repository: https://CRAN.R-project.org/package=roxygen2
authors:
- family-names: Wickham
given-names: Hadley
email: hadley@posit.co
orcid: https://orcid.org/0000-0003-4757-117X
- family-names: Danenberg
given-names: Peter
email: pcd@roxygen.org
- family-names: Csárdi
given-names: Gábor
email: csardi.gabor@gmail.com
- family-names: Eugster
given-names: Manuel
year: '2025'
doi: 10.32614/CRAN.package.roxygen2
- type: software
title: spelling
abstract: 'spelling: Tools for Spell Checking in R'
notes: Suggests
url: https://ropensci.r-universe.dev/spelling
repository: https://CRAN.R-project.org/package=spelling
authors:
- family-names: Ooms
given-names: Jeroen
email: jeroenooms@gmail.com
orcid: https://orcid.org/0000-0002-4035-0289
- family-names: Hester
given-names: Jim
email: james.hester@rstudio.com
year: '2025'
doi: 10.32614/CRAN.package.spelling
- type: software
title: testthat
abstract: 'testthat: Unit Testing for R'
notes: Suggests
url: https://testthat.r-lib.org
repository: https://CRAN.R-project.org/package=testthat
authors:
- family-names: Wickham
given-names: Hadley
email: hadley@posit.co
year: '2025'
doi: 10.32614/CRAN.package.testthat
GitHub Events
Total
- Issues event: 1
- Watch event: 2
- Push event: 37
Last Year
- Issues event: 1
- Watch event: 2
- Push event: 37
Committers
Last synced: over 1 year ago
Top Committers
| Name | Commits | |
|---|---|---|
| Hamada S. Badr | h****r@g****m | 566 |
| Hamada S. Badr | b****r@j****u | 7 |
| Matthieu Stigler | M****r@g****m | 1 |
| GitHub Actions | a****s@g****m | 1 |
Committer Domains (Top 20 + Academic)
Issues and Pull Requests
Last synced: 6 months ago
All Time
- Total issues: 4
- Total pull requests: 1
- Average time to close issues: 2 months
- Average time to close pull requests: 17 days
- Total issue authors: 4
- Total pull request authors: 1
- Average comments per issue: 4.5
- Average comments per pull request: 4.0
- Merged pull requests: 1
- Bot issues: 0
- Bot pull requests: 0
Past Year
- Issues: 0
- Pull requests: 0
- Average time to close issues: N/A
- Average time to close pull requests: N/A
- Issue authors: 0
- Pull request authors: 0
- Average comments per issue: 0
- Average comments per pull request: 0
- Merged pull requests: 0
- Bot issues: 0
- Bot pull requests: 0
Top Authors
Issue Authors
- vladamihaesei (1)
- KevinOuwerkerk (1)
- MatthieuStigler (1)
- mohseniaref-InSAR (1)
- fipoucat (1)
Pull Request Authors
- MatthieuStigler (1)
Top Labels
Issue Labels
Pull Request Labels
Packages
- Total packages: 2
-
Total downloads:
- cran 1,188 last-month
- Total docker downloads: 21,690
-
Total dependent packages: 5
(may contain duplicates) -
Total dependent repositories: 6
(may contain duplicates) - Total versions: 30
- Total maintainers: 1
cran.r-project.org: HiClimR
Hierarchical Climate Regionalization
- Homepage: https://hsbadr.github.io/HiClimR/
- Documentation: http://cran.r-project.org/web/packages/HiClimR/HiClimR.pdf
- License: GPL-3
-
Latest release: 2.2.1
published about 4 years ago
Rankings
Maintainers (1)
conda-forge.org: r-hiclimr
- Homepage: https://github.com/hsbadr/HiClimR
- License: GPL-3.0-only
-
Latest release: 2.2.1
published about 4 years ago
Rankings
Dependencies
- R >= 2.10 depends
- grDevices * imports
- graphics * imports
- ncdf4 * imports
- stats * imports
- utils * imports
- covr * suggests
- devtools * suggests
- knitr * suggests
- rmarkdown * suggests
- roxygen2 * suggests
- spelling * suggests
- testthat * suggests
- JamesIves/github-pages-deploy-action v4 composite
- actions/checkout v3 composite
- actions/create-release v1 composite
- actions/download-artifact v2 composite
- actions/download-artifact v3 composite
- actions/upload-artifact v3 composite
- actions/upload-release-asset v1 composite
- r-lib/actions/check-r-package v2 composite
- r-lib/actions/pr-fetch v2 composite
- r-lib/actions/pr-push v2 composite
- r-lib/actions/setup-pandoc v2 composite
- r-lib/actions/setup-r v2 composite
- r-lib/actions/setup-r-dependencies v2 composite
- r-lib/actions/setup-tinytex v2 composite