HiClimR

Hierarchical Climate Regionalization

https://github.com/hsbadr/hiclimr

Science Score: 77.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
    Found CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
    Found 7 DOI reference(s) in README
  • Academic publication links
    Links to: zenodo.org
  • Committers with academic emails
    1 of 4 committers (25.0%) from academic institutions
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (12.9%) to scientific vocabulary

Keywords

clustering contiguity homogeneity multivariate r regionalization spatiotemporal
Last synced: 6 months ago · JSON representation ·

Repository

Hierarchical Climate Regionalization

Basic Info
Statistics
  • Stars: 16
  • Watchers: 4
  • Forks: 8
  • Open Issues: 2
  • Releases: 18
Topics
clustering contiguity homogeneity multivariate r regionalization spatiotemporal
Created almost 11 years ago · Last pushed 6 months ago
Metadata Files
Readme Changelog License Citation

README.md

HiClimR

Lifecycle: Stable Commits since release Last commit R

CRAN Status CRAN Downloads License: GPL v3 DOI: 10.1007/s12145-015-0221-7

HiClimR: Hierarchical Climate Regionalization

Table of Contents

Introduction

HiClimR is a tool for Hierarchical Climate Regionalization applicable to any correlation-based clustering. Climate regionalization is the process of dividing an area into smaller regions that are homogeneous with respect to a specified climatic metric. Several features are added to facilitate the applications of climate regionalization (or spatiotemporal analysis in general) and to implement a cluster validation function with an objective tree cutting to find an optimal number of clusters for a user-specified confidence level. These include options for preprocessing and postprocessing as well as efficient code execution for large datasets and options for splitting big data and computing only the upper-triangular half of the correlation/dissimilarity matrix to overcome memory limitations. Hybrid hierarchical clustering reconstructs the upper part of the tree above a cut to get the best of the available methods. Multivariate clustering (MVC) provides options for filtering all variables before preprocessing, detrending and standardization of each variable, and applying weights for the preprocessed variables.

Features

HiClimR adds several features and a new clustering method (called, regional linkage) to hierarchical clustering in R (hclust function in stats library) including:

  • data regridding
  • coarsening spatial resolution
  • geographic masking
    • by continents
    • by regions
    • by countries
  • contiguity-constrained clustering
  • data filtering by thresholds
    • mean threshold
    • variance threshold
  • data preprocessing
    • detrending
    • standardization
    • PCA
  • faster correlation function
    • splitting big data matrix
    • computing upper-triangular matrix
    • using optimized BLAS library on 64-Bit machines
      • ATLAS
      • OpenBLAS
      • Intel MKL
  • different clustering methods
    • regional linkage or minimum inter-regional correlation
    • ward's minimum variance or error sum of squares method
    • single linkage or nearest neighbor method
    • complete linkage or diameter
    • average linkage, group average, or UPGMA method
    • mcquitty's or WPGMA method
    • median, Gower's or WPGMC method
    • centroid or UPGMC method
  • hybrid hierarchical clustering
    • the upper part of the tree is reconstructed above a cut
    • the lower part of the tree uses user-selected method
    • the upper part of the tree uses regional linkage method
  • multivariate clustering (MVC)
    • filtering all variables before preprocessing
    • detrending and standardization of each variable
    • applying weight for the preprocessed variables
  • cluster validation
    • summary statistics based on raw data or the data reconstructed by PCA
    • objective tree cut using minimum significant correlation between region means
  • visualization of regionalization results
  • exporting region map and mean timeseries into NetCDF-4

The regional linkage method is explained in the context of a spatiotemporal problem, in which N spatial elements (e.g., weather stations) are divided into k regions, given that each element has a time series of length M. It is based on inter-regional correlation distance between the temporal means of different regions (or elements at the first merging step). It modifies the update formulae of average linkage method by incorporating the standard deviation of the merged region timeseries, which is a function of the correlation between the individual regions, and their standard deviations before merging. It is equal to the average of their standard deviations if and only if the correlation between the two merged regions is 100%. In this special case, the regional linkage method is reduced to the classic average linkage clustering method.

Implementation

Badr et al. (2015) describes the regionalization algorithms, features, and data processing tools included in the package and presents a demonstration application in which the package is used to regionalize Africa on the basis of interannual precipitation variability. The figure below shows a detailed flowchart for the package. Cyan blocks represent helper functions, green is input data or parameters, yellow indicates agglomeration Fortran code, and purple shows graphics options. For multivariate clustering (MVC), the input data is a list of matrices (one matrix for each variable with the same number of rows to be clustered; the number of columns may vary per variable). The blue dashed boxes involve a loop for all variables to apply mean and/or variance thresholds, detrending, and/or standardization per variable before weighing the preprocessed variables and binding them by columns in one matrix for clustering. x is the input N x M data matrix, xc is the coarsened N0 x M data matrix where N0 ≤ N (N0 = N only if lonStep = 1 and latStep = 1), xm is the masked and filtered N1 x M1 data matrix where N1 ≤ N0 (N1 = N0 only if the number of masked stations/points is zero) and M1 ≤ M (M1 = M only if no columns are removed due to missing values), and x1 is the reconstructed N1 x M1 data matrix if PCA is performed.

HiClimR Flowchart

HiClimR is applicable to any correlation-based clustering.

Installation

There are many ways to install an R package from precompiled binaries or source code. For more details, you may search for how to install an R package, but here are the most convenient ways to install HiClimR:

From CRAN

This is the easiest way to install an R package on Windows, Mac, or Linux. You just fire up an R shell and type:

R install.packages("HiClimR")

In theory the package should just install, however, you may be asked to select your local mirror (i.e. which server should you use to download the package). If you are using R-GUI or R-Studio, you can find a menu for package installation where you can just search for HiClimR and install it.

From GitHub

This is intended for developers and requires a development environment (compilers, libraries, ... etc) to install the latest development release of HiClimR. On Linux and Mac, you can download the source code and use R CMD INSTALL to install it. In a convenient way, you may use pak as follows:

  • Install pak from CRAN:

R install.packages("pak")

  • Make sure you have a working development environment:

    • Windows: Install Rtools.
    • Mac: Install Xcode from the Mac App Store.
    • Linux: Install a compiler and various development libraries (details vary across different flavors of Linux).
  • Install HiClimR from GitHub source:

R pak::pkg_install("hsbadr/HiClimR")

Source

The source code repository can be found on GitHub at hsbadr/HiClimR.

License

HiClimR is licensed under GPL v3. The code is modified by Hamada S. Badr from src/library/stats/R/hclust.R part of R package Copyright © 1995-2021 The R Core Team.

  • This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

  • This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

A copy of the GNU General Public License is available at https://www.r-project.org/Licenses.

Copyright © 2013-2021 Earth and Planetary Sciences (EPS), Johns Hopkins University (JHU).

Citation

To cite HiClimR in publications, please use:

R citation("HiClimR")

Hamada S. Badr, Zaitchik, B. F. and Dezfuli, A. K. (2015): A Tool for Hierarchical Climate Regionalization, Earth Science Informatics, 8(4), 949-958, https://doi.org/10.1007/s12145-015-0221-7.

Hamada S. Badr, Zaitchik, B. F. and Dezfuli, A. K. (2014): HiClimR: Hierarchical Climate Regionalization, Comprehensive R Archive Network (CRAN), https://cran.r-project.org/package=HiClimR.

History

| Version | Date | Comment | Author | Email | |:-------------:|:------------:|:-------------:|:----------------:|:--------------:| | | May 1992 | Original | F. Murtagh | | | | Dec 1996 | Modified | Ross Ihaka | | | | Apr 1998 | Modified | F. Leisch | | | | Jun 2000 | Modified | F. Leisch | | | 1.0.0 | 03/07/14 | HiClimR | Hamada S. Badr | badr@jhu.edu | | 1.0.1 | 03/08/14 | Updated | Hamada S. Badr | badr@jhu.edu | | 1.0.2 | 03/09/14 | Updated | Hamada S. Badr | badr@jhu.edu | | 1.0.3 | 03/12/14 | Updated | Hamada S. Badr | badr@jhu.edu | | 1.0.4 | 03/14/14 | Updated | Hamada S. Badr | badr@jhu.edu | | 1.0.5 | 03/18/14 | Updated | Hamada S. Badr | badr@jhu.edu | | 1.0.6 | 03/25/14 | Updated | Hamada S. Badr | badr@jhu.edu | | 1.0.7 | 03/30/14 | Hybrid | Hamada S. Badr | badr@jhu.edu | | 1.0.8 | 05/06/14 | Updated | Hamada S. Badr | badr@jhu.edu | | 1.0.9 | 05/07/14 | CRAN | Hamada S. Badr | badr@jhu.edu | | 1.1.0 | 05/15/14 | Updated | Hamada S. Badr | badr@jhu.edu | | 1.1.1 | 07/14/14 | Updated | Hamada S. Badr | badr@jhu.edu | | 1.1.2 | 07/26/14 | Updated | Hamada S. Badr | badr@jhu.edu | | 1.1.3 | 08/28/14 | Updated | Hamada S. Badr | badr@jhu.edu | | 1.1.4 | 09/01/14 | Updated | Hamada S. Badr | badr@jhu.edu | | 1.1.5 | 11/12/14 | Updated | Hamada S. Badr | badr@jhu.edu | | 1.1.6 | 03/01/15 | GitHub | Hamada S. Badr | badr@jhu.edu | | 1.2.0 | 03/27/15 | MVC | Hamada S. Badr | badr@jhu.edu | | 1.2.1 | 05/24/15 | Updated | Hamada S. Badr | badr@jhu.edu | | 1.2.2 | 07/21/15 | Updated | Hamada S. Badr | badr@jhu.edu | | 1.2.3 | 08/05/15 | Updated | Hamada S. Badr | badr@jhu.edu | | 2.0.0 | 12/22/18 | NOTE | Hamada S. Badr | badr@jhu.edu | | 2.1.0 | 01/01/19 | NetCDF | Hamada S. Badr | badr@jhu.edu | | 2.1.1 | 01/02/19 | Updated | Hamada S. Badr | badr@jhu.edu | | 2.1.2 | 01/04/19 | Updated | Hamada S. Badr | badr@jhu.edu | | 2.1.3 | 01/10/19 | Updated | Hamada S. Badr | badr@jhu.edu | | 2.1.4 | 01/20/19 | Updated | Hamada S. Badr | badr@jhu.edu | | 2.1.5 | 12/10/19 | inherits | Hamada S. Badr | badr@jhu.edu | | 2.1.6 | 02/22/20 | Updated | Hamada S. Badr | badr@jhu.edu | | 2.1.7 | 11/05/20 | Updated | Hamada S. Badr | badr@jhu.edu | | 2.1.8 | 01/04/21 | Updated | Hamada S. Badr | badr@jhu.edu |

Examples

Single-Variate Clustering

R library(HiClimR) ```R

----------------------------------------------------------------------------------

Typical use of HiClimR for single-variate clustering:

----------------------------------------------------------------------------------

Load the test data included/loaded in the package (1 degree resolution)

x <- TestCase$x lon <- TestCase$lon lat <- TestCase$lat

Generate/check longitude and latitude mesh vectors for gridded data

xGrid <- grid2D(lon = unique(TestCase$lon), lat = unique(TestCase$lat)) lon <- c(xGrid$lon) lat <- c(xGrid$lat)

Single-Variate Hierarchical Climate Regionalization

y <- HiClimR(x, lon = lon, lat = lat, lonStep = 1, latStep = 1, geogMask = FALSE, continent = "Africa", meanThresh = 10, varThresh = 0, detrend = TRUE, standardize = TRUE, nPC = NULL, method = "ward", hybrid = FALSE, kH = NULL, members = NULL, nSplit = 1, upperTri = TRUE, verbose = TRUE, validClimR = TRUE, k = 12, minSize = 1, alpha = 0.01, plot = TRUE, colPalette = NULL, hang = -1, labels = FALSE) R

----------------------------------------------------------------------------------

Additional Examples:

----------------------------------------------------------------------------------

Use Ward's method

y <- HiClimR(x, lon = lon, lat = lat, lonStep = 1, latStep = 1, geogMask = FALSE, continent = "Africa", meanThresh = 10, varThresh = 0, detrend = TRUE, standardize = TRUE, nPC = NULL, method = "ward", hybrid = FALSE, kH = NULL, members = NULL, nSplit = 1, upperTri = TRUE, verbose = TRUE, validClimR = TRUE, k = 5, minSize = 1, alpha = 0.01, plot = TRUE, colPalette = NULL, hang = -1, labels = FALSE)

Use data splitting for big data

y <- HiClimR(x, lon = lon, lat = lat, lonStep = 1, latStep = 1, geogMask = FALSE, continent = "Africa", meanThresh = 10, varThresh = 0, detrend = TRUE, standardize = TRUE, nPC = NULL, method = "ward", hybrid = TRUE, kH = NULL, members = NULL, nSplit = 10, upperTri = TRUE, verbose = TRUE, validClimR = TRUE, k = 12, minSize = 1, alpha = 0.01, plot = TRUE, colPalette = NULL, hang = -1, labels = FALSE)

Use hybrid Ward-Regional method

y <- HiClimR(x, lon = lon, lat = lat, lonStep = 1, latStep = 1, geogMask = FALSE, continent = "Africa", meanThresh = 10, varThresh = 0, detrend = TRUE, standardize = TRUE, nPC = NULL, method = "ward", hybrid = TRUE, kH = NULL, members = NULL, nSplit = 1, upperTri = TRUE, verbose = TRUE, validClimR = TRUE, k = 12, minSize = 1, alpha = 0.01, plot = TRUE, colPalette = NULL, hang = -1, labels = FALSE)

Check senitivity to kH for the hybrid method above

```

Multivariate Clustering

```R

----------------------------------------------------------------------------------

Typical use of HiClimR for multivariate clustering:

----------------------------------------------------------------------------------

Load the test data included/loaded in the package (1 degree resolution)

x1 <- TestCase$x lon <- TestCase$lon lat <- TestCase$lat

## Generate/check longitude and latitude mesh vectors for gridded data xGrid <- grid2D(lon = unique(TestCase$lon), lat = unique(TestCase$lat)) lon <- c(xGrid$lon) lat <- c(xGrid$lat)

Test if we can replicate single-variate region map with repeated variable

y <- HiClimR(x=list(x1, x1), lon = lon, lat = lat, lonStep = 1, latStep = 1, geogMask = FALSE, continent = "Africa", meanThresh = list(10, 10), varThresh = list(0, 0), detrend = list(TRUE, TRUE), standardize = list(TRUE, TRUE), nPC = NULL, method = "ward", hybrid = FALSE, kH = NULL, members = NULL, nSplit = 1, upperTri = TRUE, verbose = TRUE, validClimR = TRUE, k = 12, minSize = 1, alpha = 0.01, plot = TRUE, colPalette = NULL, hang = -1, labels = FALSE)

Generate a random matrix with the same number of rows

x2 <- matrix(rnorm(nrow(x1) * 100, mean=0, sd=1), nrow(x1), 100)

Multivariate Hierarchical Climate Regionalization

y <- HiClimR(x=list(x1, x2), lon = lon, lat = lat, lonStep = 1, latStep = 1, geogMask = FALSE, continent = "Africa", meanThresh = list(10, NULL), varThresh = list(0, 0), detrend = list(TRUE, FALSE), standardize = list(TRUE, TRUE), weightMVC = list(1, 1), nPC = NULL, method = "ward", hybrid = FALSE, kH = NULL, members = NULL, nSplit = 1, upperTri = TRUE, verbose = TRUE, validClimR = TRUE, k = 12, minSize = 1, alpha = 0.01, plot = TRUE, colPalette = NULL, hang = -1, labels = FALSE)

You can apply all clustering methods and options

```

Miscellaneous Examples

```R

----------------------------------------------------------------------------------

Miscellaneous examples to provide more information about functionality and usage

of the helper functions that can be used separately or for other applications.

----------------------------------------------------------------------------------

Load test case data

x <- TestCase$x

Generate longitude and latitude mesh vectors

xGrid <- grid2D(lon = unique(TestCase$lon), lat = unique(TestCase$lat)) lon <- c(xGrid$lon) lat <- c(xGrid$lat)

Coarsening spatial resolution

xc <- coarseR(x = x, lon = lon, lat = lat, lonStep = 2, latStep = 2) lon <- xc$lon lat <- xc$lat x <- xc$x

Use fastCor function to compute the correlation matrix

t0 <- proc.time(); xcor <- fastCor(t(x)); proc.time() - t0

compare with cor function

t0 <- proc.time(); xcor0 <- cor(t(x)); proc.time() - t0

Check the valid options for geographic masking

geogMask()

geographic mask for Africa

gMask <- geogMask(continent = "Africa", lon = lon, lat = lat, plot = TRUE, colPalette = NULL)

Hierarchical Climate Regionalization Without geographic masking

y <- HiClimR(x, lon = lon, lat = lat, lonStep = 1, latStep = 1, geogMask = FALSE, continent = "Africa", meanThresh = 10, varThresh = 0, detrend = TRUE, standardize = TRUE, nPC = NULL, method = "ward", hybrid = FALSE, kH = NULL, members = NULL, nSplit = 1, upperTri = TRUE, verbose = TRUE, validClimR = TRUE, k = 12, minSize = 1, alpha = 0.01, plot = TRUE, colPalette = NULL, hang = -1, labels = FALSE)

With geographic masking (you may specify the mask produced above to save time)

y <- HiClimR(x, lon = lon, lat = lat, lonStep = 1, latStep = 1, geogMask = TRUE, continent = "Africa", meanThresh = 10, varThresh = 0, detrend = TRUE, standardize = TRUE, nPC = NULL, method = "ward", hybrid = FALSE, kH = NULL, members = NULL, nSplit = 1, upperTri = TRUE, verbose = TRUE, validClimR = TRUE, k = 12, minSize = 1, alpha = 0.01, plot = TRUE, colPalette = NULL, hang = -1, labels = FALSE)

With geographic masking and contiguity constraint

Change contigConst as appropriate

y <- HiClimR(x, lon = lon, lat = lat, lonStep = 1, latStep = 1, geogMask = TRUE, continent = "Africa", contigConst = 1, meanThresh = 10, varThresh = 0, detrend = TRUE, standardize = TRUE, nPC = NULL, method = "ward", hybrid = FALSE, kH = NULL, members = NULL, nSplit = 1, upperTri = TRUE, verbose = TRUE, validClimR = TRUE, k = 12, minSize = 1, alpha = 0.01, plot = TRUE, colPalette = NULL, hang = -1, labels = FALSE)

Find minimum significant correlation at 95% confidence level

rMin <- minSigCor(n = nrow(x), alpha = 0.05, r = seq(0, 1, by = 1e-06))

Validtion of Hierarchical Climate Regionalization

z <- validClimR(y, k = 12, minSize = 1, alpha = 0.01, plot = TRUE, colPalette = NULL)

Apply minimum cluster size (minSize = 25)

z <- validClimR(y, k = 12, minSize = 25, alpha = 0.01, plot = TRUE, colPalette = NULL)

The optimal number of clusters, including small clusters

k <- length(z$clustFlag)

The selected number of clusters, after excluding small clusters (if minSize > 1)

ks <- sum(z$clustFlag)

Dendrogram plot

plot(y, hang = -1, labels = FALSE)

Tree cut

cutTree <- cutree(y, k = k) table(cutTree)

Visualization for gridded data

RegionsMap <- matrix(y$region, nrow = length(unique(y$coords[, 1])), byrow = TRUE) colPalette <- colorRampPalette(c("#00007F", "blue", "#007FFF", "cyan", "#7FFF7F", "yellow", "#FF7F00", "red", "#7F0000")) image(unique(y$coords[, 1]), unique(y$coords[, 2]), RegionsMap, col = colPalette(ks))

Visualization for gridded or ungridded data

plot(y$coords[, 1], y$coords[, 2], col = colPalette(max(y$region, na.rm = TRUE))[y$region], pch = 15, cex = 1)

Change pch and cex as appropriate!

Export region map and mean timeseries into NetCDF-4 file

library(ncdf4) y.nc <- HiClimR2nc(y=y, ncfile="HiClimR.nc", timeunit="years", dataunit="mm")

The NetCDF-4 file is still open to add other variables or close it

nc_close(y.nc)

```

Owner

  • Name: Hamada S. Badr
  • Login: hsbadr
  • Kind: user
  • Location: Washington, District of Columbia
  • Company: Amazon Web Services (AWS)

Senior Applied Scientist

Citation (CITATION.cff)

# --------------------------------------------
# CITATION file created with {cffr} R package
# See also: https://docs.ropensci.org/cffr/
# --------------------------------------------
 
cff-version: 1.2.0
message: 'To cite package "HiClimR" in publications use:'
type: software
license: GPL-3.0-only
title: 'HiClimR: Hierarchical Climate Regionalization'
version: 2.2.1
doi: 10.1007/s12145-015-0221-7
identifiers:
- type: doi
  value: 10.32614/CRAN.package.HiClimR
abstract: 'A tool for Hierarchical Climate Regionalization applicable to any correlation-based
  clustering. It adds several features and a new clustering method (called, ''regional''
  linkage) to hierarchical clustering in R (''hclust'' function in ''stats'' library):
  data regridding, coarsening spatial resolution, geographic masking, contiguity-constrained
  clustering, data filtering by mean and/or variance thresholds, data preprocessing
  (detrending, standardization, and PCA), faster correlation function with preliminary
  big data support, different clustering methods, hybrid hierarchical clustering,
  multivariate clustering (MVC), cluster validation, visualization of regionalization
  results, and exporting region map and mean timeseries into NetCDF-4 file. The technical
  details are described in Badr et al. (2015) <https://doi.org/10.1007/s12145-015-0221-7>.'
authors:
- family-names: Badr
  given-names: Hamada S.
  email: badr@jhu.edu
  orcid: https://orcid.org/0000-0002-9808-2344
- family-names: Zaitchik
  given-names: Benjamin F.
  email: zaitchik@jhu.edu
  orcid: https://orcid.org/0000-0002-0698-0658
- family-names: Dezfuli
  given-names: Amin K.
  email: amin.dezfuli@nasa.gov
  orcid: https://orcid.org/0000-0003-3274-8542
preferred-citation:
  type: article
  title: A Tool for Hierarchical Climate Regionalization
  authors:
  - family-names: Badr
    given-names: Hamada S.
    email: badr@jhu.edu
    orcid: https://orcid.org/0000-0002-9808-2344
  - family-names: Zaitchik
    given-names: Benjamin F.
    email: zaitchik@jhu.edu
    orcid: https://orcid.org/0000-0002-0698-0658
  - family-names: Dezfuli
    given-names: Amin K.
    email: amin.dezfuli@nasa.gov
    orcid: https://orcid.org/0000-0003-3274-8542
  year: '2015'
  journal: Earth Science Informatics
  publisher:
    name: Springer
  volume: '8'
  issue: '4'
  doi: 10.1007/s12145-015-0221-7
  url: https://doi.org/10.1007/s12145-015-0221-7
  start: '949'
  end: '958'
repository: https://CRAN.R-project.org/package=HiClimR
repository-code: https://github.com/hsbadr/HiClimR
url: https://hsbadr.github.io/HiClimR/
contact:
- family-names: Badr
  given-names: Hamada S.
  email: badr@jhu.edu
  orcid: https://orcid.org/0000-0002-9808-2344
keywords:
- clustering
- contiguity
- homogeneity
- multivariate
- r
- regionalization
- spatiotemporal
references:
- type: manual
  title: 'HiClimR: Hierarchical Climate Regionalization'
  authors:
  - family-names: Badr
    given-names: Hamada S.
    email: badr@jhu.edu
    orcid: https://orcid.org/0000-0002-9808-2344
  - family-names: Zaitchik
    given-names: Benjamin F.
    email: zaitchik@jhu.edu
    orcid: https://orcid.org/0000-0002-0698-0658
  - family-names: Dezfuli
    given-names: Amin K.
    email: amin.dezfuli@nasa.gov
    orcid: https://orcid.org/0000-0003-3274-8542
  year: '2014'
  journal: Comprehensive R Archive Network (CRAN)
  url: https://cran.r-project.org/package=HiClimR
- type: software
  title: 'R: A Language and Environment for Statistical Computing'
  notes: Depends
  url: https://www.R-project.org/
  authors:
  - name: R Core Team
  institution:
    name: 'R Foundation for Statistical Computing (ROR: <https://ror.org/05qewa988>)'
    address: Vienna, Austria
  year: '2025'
  doi: 10.32614/R.manuals
  version: '>= 2.10'
- type: software
  title: graphics
  abstract: 'R: A Language and Environment for Statistical Computing'
  notes: Imports
  authors:
  - name: R Core Team
  institution:
    name: 'R Foundation for Statistical Computing (ROR: <https://ror.org/05qewa988>)'
    address: Vienna, Austria
  year: '2025'
  doi: 10.32614/R.manuals
- type: software
  title: grDevices
  abstract: 'R: A Language and Environment for Statistical Computing'
  notes: Imports
  authors:
  - name: R Core Team
  institution:
    name: 'R Foundation for Statistical Computing (ROR: <https://ror.org/05qewa988>)'
    address: Vienna, Austria
  year: '2025'
  doi: 10.32614/R.manuals
- type: software
  title: stats
  abstract: 'R: A Language and Environment for Statistical Computing'
  notes: Imports
  authors:
  - name: R Core Team
  institution:
    name: 'R Foundation for Statistical Computing (ROR: <https://ror.org/05qewa988>)'
    address: Vienna, Austria
  year: '2025'
  doi: 10.32614/R.manuals
- type: software
  title: utils
  abstract: 'R: A Language and Environment for Statistical Computing'
  notes: Imports
  authors:
  - name: R Core Team
  institution:
    name: 'R Foundation for Statistical Computing (ROR: <https://ror.org/05qewa988>)'
    address: Vienna, Austria
  year: '2025'
  doi: 10.32614/R.manuals
- type: software
  title: ncdf4
  abstract: 'ncdf4: Interface to Unidata netCDF (Version 4 or Earlier) Format Data
    Files'
  notes: Imports
  url: https://cirrus.ucsd.edu/~pierce/ncdf/
  repository: https://CRAN.R-project.org/package=ncdf4
  authors:
  - family-names: Pierce
    given-names: David
    email: dpierce@ucsd.edu
    orcid: https://orcid.org/0000-0002-2453-9030
  year: '2025'
  doi: 10.32614/CRAN.package.ncdf4
- type: software
  title: covr
  abstract: 'covr: Test Coverage for Packages'
  notes: Suggests
  url: https://covr.r-lib.org
  repository: https://CRAN.R-project.org/package=covr
  authors:
  - family-names: Hester
    given-names: Jim
    email: james.f.hester@gmail.com
  year: '2025'
  doi: 10.32614/CRAN.package.covr
- type: software
  title: devtools
  abstract: 'devtools: Tools to Make Developing R Packages Easier'
  notes: Suggests
  url: https://devtools.r-lib.org/
  repository: https://CRAN.R-project.org/package=devtools
  authors:
  - family-names: Wickham
    given-names: Hadley
  - family-names: Hester
    given-names: Jim
  - family-names: Chang
    given-names: Winston
  - family-names: Bryan
    given-names: Jennifer
    email: jenny@rstudio.com
    orcid: https://orcid.org/0000-0002-6983-2759
  year: '2025'
  doi: 10.32614/CRAN.package.devtools
- type: software
  title: knitr
  abstract: 'knitr: A General-Purpose Package for Dynamic Report Generation in R'
  notes: Suggests
  url: https://yihui.org/knitr/
  repository: https://CRAN.R-project.org/package=knitr
  authors:
  - family-names: Xie
    given-names: Yihui
    email: xie@yihui.name
    orcid: https://orcid.org/0000-0003-0645-5666
  year: '2025'
  doi: 10.32614/CRAN.package.knitr
- type: software
  title: rmarkdown
  abstract: 'rmarkdown: Dynamic Documents for R'
  notes: Suggests
  url: https://pkgs.rstudio.com/rmarkdown/
  repository: https://CRAN.R-project.org/package=rmarkdown
  authors:
  - family-names: Allaire
    given-names: JJ
    email: jj@posit.co
  - family-names: Xie
    given-names: Yihui
    email: xie@yihui.name
    orcid: https://orcid.org/0000-0003-0645-5666
  - family-names: Dervieux
    given-names: Christophe
    email: cderv@posit.co
    orcid: https://orcid.org/0000-0003-4474-2498
  - family-names: McPherson
    given-names: Jonathan
    email: jonathan@posit.co
  - family-names: Luraschi
    given-names: Javier
  - family-names: Ushey
    given-names: Kevin
    email: kevin@posit.co
  - family-names: Atkins
    given-names: Aron
    email: aron@posit.co
  - family-names: Wickham
    given-names: Hadley
    email: hadley@posit.co
  - family-names: Cheng
    given-names: Joe
    email: joe@posit.co
  - family-names: Chang
    given-names: Winston
    email: winston@posit.co
  - family-names: Iannone
    given-names: Richard
    email: rich@posit.co
    orcid: https://orcid.org/0000-0003-3925-190X
  year: '2025'
  doi: 10.32614/CRAN.package.rmarkdown
- type: software
  title: roxygen2
  abstract: 'roxygen2: In-Line Documentation for R'
  notes: Suggests
  url: https://roxygen2.r-lib.org/
  repository: https://CRAN.R-project.org/package=roxygen2
  authors:
  - family-names: Wickham
    given-names: Hadley
    email: hadley@posit.co
    orcid: https://orcid.org/0000-0003-4757-117X
  - family-names: Danenberg
    given-names: Peter
    email: pcd@roxygen.org
  - family-names: Csárdi
    given-names: Gábor
    email: csardi.gabor@gmail.com
  - family-names: Eugster
    given-names: Manuel
  year: '2025'
  doi: 10.32614/CRAN.package.roxygen2
- type: software
  title: spelling
  abstract: 'spelling: Tools for Spell Checking in R'
  notes: Suggests
  url: https://ropensci.r-universe.dev/spelling
  repository: https://CRAN.R-project.org/package=spelling
  authors:
  - family-names: Ooms
    given-names: Jeroen
    email: jeroenooms@gmail.com
    orcid: https://orcid.org/0000-0002-4035-0289
  - family-names: Hester
    given-names: Jim
    email: james.hester@rstudio.com
  year: '2025'
  doi: 10.32614/CRAN.package.spelling
- type: software
  title: testthat
  abstract: 'testthat: Unit Testing for R'
  notes: Suggests
  url: https://testthat.r-lib.org
  repository: https://CRAN.R-project.org/package=testthat
  authors:
  - family-names: Wickham
    given-names: Hadley
    email: hadley@posit.co
  year: '2025'
  doi: 10.32614/CRAN.package.testthat

GitHub Events

Total
  • Issues event: 1
  • Watch event: 2
  • Push event: 37
Last Year
  • Issues event: 1
  • Watch event: 2
  • Push event: 37

Committers

Last synced: over 1 year ago

All Time
  • Total Commits: 575
  • Total Committers: 4
  • Avg Commits per committer: 143.75
  • Development Distribution Score (DDS): 0.016
Past Year
  • Commits: 18
  • Committers: 1
  • Avg Commits per committer: 18.0
  • Development Distribution Score (DDS): 0.0
Top Committers
Name Email Commits
Hamada S. Badr h****r@g****m 566
Hamada S. Badr b****r@j****u 7
Matthieu Stigler M****r@g****m 1
GitHub Actions a****s@g****m 1
Committer Domains (Top 20 + Academic)

Issues and Pull Requests

Last synced: 6 months ago

All Time
  • Total issues: 4
  • Total pull requests: 1
  • Average time to close issues: 2 months
  • Average time to close pull requests: 17 days
  • Total issue authors: 4
  • Total pull request authors: 1
  • Average comments per issue: 4.5
  • Average comments per pull request: 4.0
  • Merged pull requests: 1
  • Bot issues: 0
  • Bot pull requests: 0
Past Year
  • Issues: 0
  • Pull requests: 0
  • Average time to close issues: N/A
  • Average time to close pull requests: N/A
  • Issue authors: 0
  • Pull request authors: 0
  • Average comments per issue: 0
  • Average comments per pull request: 0
  • Merged pull requests: 0
  • Bot issues: 0
  • Bot pull requests: 0
Top Authors
Issue Authors
  • vladamihaesei (1)
  • KevinOuwerkerk (1)
  • MatthieuStigler (1)
  • mohseniaref-InSAR (1)
  • fipoucat (1)
Pull Request Authors
  • MatthieuStigler (1)
Top Labels
Issue Labels
Pull Request Labels

Packages

  • Total packages: 2
  • Total downloads:
    • cran 1,188 last-month
  • Total docker downloads: 21,690
  • Total dependent packages: 5
    (may contain duplicates)
  • Total dependent repositories: 6
    (may contain duplicates)
  • Total versions: 30
  • Total maintainers: 1
cran.r-project.org: HiClimR

Hierarchical Climate Regionalization

  • Versions: 22
  • Dependent Packages: 4
  • Dependent Repositories: 6
  • Downloads: 1,188 Last month
  • Docker Downloads: 21,690
Rankings
Docker downloads count: 0.6%
Forks count: 7.9%
Dependent packages count: 9.3%
Average: 9.9%
Dependent repos count: 12.0%
Downloads: 14.2%
Stargazers count: 15.1%
Maintainers (1)
Last synced: 6 months ago
conda-forge.org: r-hiclimr
  • Versions: 8
  • Dependent Packages: 1
  • Dependent Repositories: 0
Rankings
Dependent packages count: 28.8%
Dependent repos count: 34.0%
Average: 39.3%
Forks count: 44.7%
Stargazers count: 49.6%
Last synced: 6 months ago

Dependencies

DESCRIPTION cran
  • R >= 2.10 depends
  • grDevices * imports
  • graphics * imports
  • ncdf4 * imports
  • stats * imports
  • utils * imports
  • covr * suggests
  • devtools * suggests
  • knitr * suggests
  • rmarkdown * suggests
  • roxygen2 * suggests
  • spelling * suggests
  • testthat * suggests
.github/workflows/R.yml actions
  • JamesIves/github-pages-deploy-action v4 composite
  • actions/checkout v3 composite
  • actions/create-release v1 composite
  • actions/download-artifact v2 composite
  • actions/download-artifact v3 composite
  • actions/upload-artifact v3 composite
  • actions/upload-release-asset v1 composite
  • r-lib/actions/check-r-package v2 composite
  • r-lib/actions/pr-fetch v2 composite
  • r-lib/actions/pr-push v2 composite
  • r-lib/actions/setup-pandoc v2 composite
  • r-lib/actions/setup-r v2 composite
  • r-lib/actions/setup-r-dependencies v2 composite
  • r-lib/actions/setup-tinytex v2 composite