RobotDART
RobotDART: a versatile robot simulator for robotics and machine learning researchers - Published in JOSS (2024)
Science Score: 95.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
○CITATION.cff file
-
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
✓DOI references
Found 6 DOI reference(s) in README and JOSS metadata -
✓Academic publication links
Links to: arxiv.org, sciencedirect.com, frontiersin.org, ieee.org, acm.org -
✓Committers with academic emails
8 of 20 committers (40.0%) from academic institutions -
○Institutional organization owner
-
✓JOSS paper metadata
Published in Journal of Open Source Software
Keywords
Keywords from Contributors
Scientific Fields
Repository
RobotDART: a versatile robot simulator for robotics and machine learning researchers
Basic Info
- Host: GitHub
- Owner: NOSALRO
- License: bsd-2-clause
- Language: C++
- Default Branch: master
- Homepage: https://nosalro.github.io/robot_dart/
- Size: 47.8 MB
Statistics
- Stars: 54
- Watchers: 11
- Forks: 26
- Open Issues: 15
- Releases: 1
Topics
Metadata Files
README.md
RobotDART

RobotDART is a C++ robot simulator (with optional Python bindings) built on top of the DART physics engine. The RobotDART simulator is intended to be used by Robotics and Machine Learning researchers who want to write controllers or test learning algorithms without the delays and overhead that usually comes with other simulators (e.g., Gazebo, Coppelia-sim).
Documentation
Documentation is available at: https://nosalro.github.io/robot_dart/
Authors
- Author/Maintainer: Konstantinos Chatzilygeroudis (University of Patras)
- Active contributors: Dionis Totsila (Inria and University of Patras), Jean-Baptiste Mouret (Inria)
- Other contributors: Antoine Cully, Vassilis Vassiliades, Vaios Papaspyros
Citing RobotDART
If you use this code in a scientific publication, please use the following citation:
bibtex
@article{chatzilygeroudis2024robot,
title={{RobotDART: a versatile robot simulator for robotics and machine learning researchers}},
author={Chatzilygeroudis, Konstantinos and Dionis, Totsila and Mouret, Jean-Baptiste},
year={2024},
booktitle={{Preprint (Submitted to JOSS)}}
}
Acknowledgments
This work was supported by the Hellenic Foundation for Research and Innovation (H.F.R.I.) under the "3rd Call for H.F.R.I. Research Projects to support Post-Doctoral Researchers" (Project Acronym: NOSALRO, Project Number: 7541).

Contributing
Check out our contribution guidelines to get started.
License
BSD 2-Clause "Simplified" License
Scientific Publications using RobotDART (indicative list, ordered by date)
Anne, T. and Mouret, J.B., 2024. Parametric-Task MAP-Elites. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO). (pdf)
Ivaldi, S. and Ghini, E., 2023, June. Teleoperating a robot for removing asbestos tiles on roofs: insights from a pilot study. In 2023 IEEE International Conference on Advanced Robotics and Its Social Impacts (ARSO) (pp. 128-133). IEEE. (pdf)
Khadivar, F., Chatzilygeroudis, K. and Billard, A., 2023. Self-correcting quadratic programming-based robot control. IEEE Transactions on Systems, Man, and Cybernetics: Systems. (pdf)
Souza, A.O., Grenier, J., Charpillet, F., Maurice, P. and Ivaldi, S., 2023, June. Towards data-driven predictive control of active upper-body exoskeletons for load carrying. In 2023 IEEE International Conference on Advanced Robotics and Its Social Impacts (ARSO) (pp. 59-64). IEEE. (pdf)
Chatzilygeroudis, K.I., Tsakonas, C.G. and Vrahatis, M.N., 2023, July. Evolving Dynamic Locomotion Policies in Minutes. In 2023 14th International Conference on Information, Intelligence, Systems & Applications (IISA) (pp. 1-8). IEEE. (pdf)
Tsakonas, C.G. and Chatzilygeroudis, K.I., 2023, July. Effective Skill Learning via Autonomous Goal Representation Learning. In 2023 14th International Conference on Information, Intelligence, Systems & Applications (IISA) (pp. 1-8). IEEE. (pdf)
Totsila, D., Chatzilygeroudis, K., Hadjivelichkov, D., Modugno, V., Hatzilygeroudis, I. and Kanoulas, D., 2023. End-to-End Stable Imitation Learning via Autonomous Neural Dynamic Policies. Life-Long Learning with Human Help (L3H2) Workshop, ICRA. (pdf)
Allard, M., Smith, S.C., Chatzilygeroudis, K., Lim, B. and Cully, A., 2023. Online damage recovery for physical robots with hierarchical quality-diversity. ACM Transactions on Evolutionary Learning, 3(2), pp.1-23. (pdf)
Anne, T., Dalin, E., Bergonzani, I., Ivaldi, S. and Mouret, J.B., 2022. First do not fall: learning to exploit a wall with a damaged humanoid robot. IEEE Robotics and Automation Letters, 7(4), pp.9028-9035. (pdf)
Mayr, M., Ahmad, F., Chatzilygeroudis, K., Nardi, L. and Krueger, V., 2022, December. Skill-based multi-objective reinforcement learning of industrial robot tasks with planning and knowledge integration. In 2022 IEEE International Conference on Robotics and Biomimetics (ROBIO) (pp. 1995-2002). IEEE. (pdf)
Grillotti, L. and Cully, A., 2022. Unsupervised behavior discovery with quality-diversity optimization. IEEE Transactions on Evolutionary Computation, 26(6), pp.1539-1552. (pdf)
Lim, B., Grillotti, L., Bernasconi, L. and Cully, A., 2022, May. Dynamics-aware quality-diversity for efficient learning of skill repertoires. In 2022 International Conference on Robotics and Automation (ICRA) (pp. 5360-5366). IEEE. (pdf)
Tsinganos, K., Chatzilygeroudis, K., Hadjivelichkov, D., Komninos, T., Dermatas, E. and Kanoulas, D., 2022. Behavior policy learning: Learning multi-stage tasks via solution sketches and model-based controllers. Frontiers in Robotics and AI, 9, p.974537. (pdf)
d'Elia, E., Mouret, J.B., Kober, J. and Ivaldi, S., 2022, October. Automatic tuning and selection of whole-body controllers. In 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 12935-12941). IEEE. (pdf)
Mayr, M., Hvarfner, C., Chatzilygeroudis, K., Nardi, L. and Krueger, V., 2022, August. Learning skill-based industrial robot tasks with user priors. In 2022 IEEE 18th International Conference on Automation Science and Engineering (CASE) (pp. 1485-1492). IEEE. (pdf)
Allard, M., Smith, S.C., Chatzilygeroudis, K. and Cully, A., 2022, July. Hierarchical quality-diversity for online damage recovery. In Proceedings of the Genetic and Evolutionary Computation Conference (pp. 58-67). (pdf)
Mayr, M., Ahmad, F., Chatzilygeroudis, K., Nardi, L. and Krueger, V., 2022. Combining planning, reasoning and reinforcement learning to solve industrial robot tasks. 2nd Workshop on Trends and Advances in Machine Learning and Automated Reasoning for Intelligent Robots and Systems, IROS. (pdf)
Cully, A., 2021, June. Multi-emitter map-elites: improving quality, diversity and data efficiency with heterogeneous sets of emitters. In Proceedings of the Genetic and Evolutionary Computation Conference (pp. 84-92). (pdf)
Mayr, M., Chatzilygeroudis, K., Ahmad, F., Nardi, L. and Krueger, V., 2021, September. Learning of parameters in behavior trees for movement skills. In 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 7572-7579). IEEE. (pdf)
Penco, L., Hoffman, E.M., Modugno, V., Gomes, W., Mouret, J.B. and Ivaldi, S., 2020. Learning robust task priorities and gains for control of redundant robots. IEEE Robotics and Automation Letters, 5(2), pp.2626-2633. (pdf)
Flageat, M. and Cully, A., 2020, July. Fast and stable MAP-Elites in noisy domains using deep grids. In Artificial Life Conference Proceedings 32 (pp. 273-282). One Rogers Street, Cambridge, MA 02142-1209, USA journals-info@ mit. edu: MIT Press. (pdf)
Paul, S., Chatzilygeroudis, K., Ciosek, K., Mouret, J.B., Osborne, M.A. and Whiteson, S., 2020. Robust reinforcement learning with Bayesian optimisation and quadrature. Journal of Machine Learning Research, 21(151), pp.1-31. (pdf)
Chatzilygeroudis, K., Vassiliades, V. and Mouret, J.B., 2018. Reset-free trial-and-error learning for robot damage recovery. Robotics and Autonomous Systems, 100, pp.236-250. (pdf)
Pautrat, R., Chatzilygeroudis, K. and Mouret, J.B., 2018, May. Bayesian optimization with automatic prior selection for data-efficient direct policy search. In 2018 IEEE International Conference on Robotics and Automation (ICRA) (pp. 7571-7578). IEEE. (pdf)
Chatzilygeroudis, K. and Mouret, J.B., 2018, May. Using parameterized black-box priors to scale up model-based policy search for robotics. In 2018 IEEE international conference on robotics and automation (ICRA) (pp. 5121-5128). IEEE. (pdf)
Paul, S., Chatzilygeroudis, K., Ciosek, K., Mouret, J.B., Osborne, M. and Whiteson, S., 2018, April. Alternating optimisation and quadrature for robust control. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). (pdf)
Kaushik, R., Chatzilygeroudis, K. and Mouret, J.B., 2018, October. Multi-objective model-based policy search for data-efficient learning with sparse rewards. In Conference on Robot Learning (pp. 839-855). PMLR. (pdf)
Vassiliades, V., Chatzilygeroudis, K. and Mouret, J.B., 2017. Using centroidal voronoi tessellations to scale up the multidimensional archive of phenotypic elites algorithm. IEEE Transactions on Evolutionary Computation, 22(4), pp.623-630. (pdf)
Mouret, J.B. and Chatzilygeroudis, K., 2017, July. 20 years of reality gap: a few thoughts about simulators in evolutionary robotics. In Proceedings of the genetic and evolutionary computation conference companion (pp. 1121-1124). (pdf)
Papaspyros, V., Chatzilygeroudis, K., Vassiliades, V. and Mouret, J.B., 2016. Safety-aware robot damage recovery using constrained bayesian optimization and simulated priors. BayesOpt '16: Proceedings of the International Workshop "Bayesian Optimization: Black-box Optimization and Beyond", NeurIPS. (pdf)
Chatzilygeroudis, K., Cully, A. and Mouret, J.B., 2016. Towards semi-episodic learning for robot damage recovery. AILTA '16: Proceedings of the International Workshop "AI for Long-term Autonomy", ICRA. (pdf)
Owner
- Name: NOSALRO
- Login: NOSALRO
- Kind: organization
- Email: costashatz@upatras.gr
- Location: Greece
- Website: https://nosalro.github.io/
- Twitter: nosalro
- Repositories: 1
- Profile: https://github.com/NOSALRO
Novel Optimization Methods for Autonomous Skill Learning in Robotics - H.F.R.I. Project 2022-2024
JOSS Publication
RobotDART: a versatile robot simulator for robotics and machine learning researchers
Authors
Laboratory of Automation and Robotics (LAR), Department of Electrical & Computer Engineering, University of Patras, Greece, Computational Intelligence Lab (CILab), Department of Mathematics, University of Patras, Greece
Tags
Robot simulator Robotics Machine LearningGitHub Events
Total
- Watch event: 6
- Member event: 1
- Push event: 3
- Pull request event: 2
- Fork event: 1
- Create event: 2
Last Year
- Watch event: 6
- Member event: 1
- Push event: 3
- Pull request event: 2
- Fork event: 1
- Create event: 2
Committers
Last synced: 5 months ago
Top Committers
| Name | Commits | |
|---|---|---|
| Konstantinos Chatzilygeroudis | c****z@g****m | 946 |
| Jean-Baptiste Mouret | j****t@i****r | 222 |
| DionisTotsila | s****2@c****r | 82 |
| Vaios Papaspyros | b****s@g****m | 18 |
| eloise | e****n@i****r | 17 |
| Antoine Cully | a****y@i****k | 14 |
| dinies | e****i@l****t | 14 |
| Ivan Bergonzani | i****i@o****m | 14 |
| Dorian Goepp | d****p@i****r | 6 |
| kostastsing | k****4@g****m | 6 |
| jspitz | j****z@i****r | 3 |
| Matthias Mayr | m****r@c****e | 2 |
| Olivier Rochel | o****l@i****r | 2 |
| Pierre Desreumaux | p****x@i****r | 2 |
| Sébastien Boisgérault | S****t@g****m | 1 |
| Vassilis Vassiliades | v****s@g****m | 1 |
| artificialsimon | 3****n | 1 |
| itUserName | i****l | 1 |
| Erick Kramer | e****r@f****e | 1 |
| kounelisagis | k****s@g****m | 1 |
Committer Domains (Top 20 + Academic)
Issues and Pull Requests
Last synced: 4 months ago
All Time
- Total issues: 34
- Total pull requests: 71
- Average time to close issues: 7 months
- Average time to close pull requests: about 1 month
- Total issue authors: 8
- Total pull request authors: 13
- Average comments per issue: 2.91
- Average comments per pull request: 1.31
- Merged pull requests: 62
- Bot issues: 0
- Bot pull requests: 0
Past Year
- Issues: 1
- Pull requests: 7
- Average time to close issues: N/A
- Average time to close pull requests: 4 days
- Issue authors: 1
- Pull request authors: 5
- Average comments per issue: 0.0
- Average comments per pull request: 0.0
- Merged pull requests: 3
- Bot issues: 0
- Bot pull requests: 0
Top Authors
Issue Authors
- costashatz (13)
- c-joly (12)
- jbmouret (6)
- pngsyr (1)
- IIIIIIIIll (1)
- Timothee-ANNE (1)
- im-Kitsch (1)
- bstanciulescu (1)
Pull Request Authors
- costashatz (48)
- jbmouret (11)
- dtotsila (4)
- dalinel (3)
- kounelisagis (3)
- c-joly (2)
- dinies (2)
- olivierrochel-inria (2)
- boisgera (2)
- anhurion (2)
- artificialsimon (1)
- matthias-mayr (1)
- kostastsing (1)
Top Labels
Issue Labels
Pull Request Labels
Dependencies
- actions/cache v2 composite
- actions/checkout v2 composite
- actions/cache v2 composite
- actions/checkout v2 composite
- actions/checkout v4 composite