RobotDART

RobotDART: a versatile robot simulator for robotics and machine learning researchers - Published in JOSS (2024)

https://github.com/nosalro/robot_dart

Science Score: 95.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
    Found 6 DOI reference(s) in README and JOSS metadata
  • Academic publication links
    Links to: arxiv.org, sciencedirect.com, frontiersin.org, ieee.org, acm.org
  • Committers with academic emails
    8 of 20 committers (40.0%) from academic institutions
  • Institutional organization owner
  • JOSS paper metadata
    Published in Journal of Open Source Software

Keywords

dart eigen3 magnum

Keywords from Contributors

bayesian-optimization gaussian-processes optimization-framework optimization-library

Scientific Fields

Biology Life Sciences - 40% confidence
Last synced: 4 months ago · JSON representation

Repository

RobotDART: a versatile robot simulator for robotics and machine learning researchers

Basic Info
Statistics
  • Stars: 54
  • Watchers: 11
  • Forks: 26
  • Open Issues: 15
  • Releases: 1
Topics
dart eigen3 magnum
Created almost 9 years ago · Last pushed 10 months ago
Metadata Files
Readme Contributing License

README.md

RobotDART Build Status Build Status Mac Build Status Website

RobotDART is a C++ robot simulator (with optional Python bindings) built on top of the DART physics engine. The RobotDART simulator is intended to be used by Robotics and Machine Learning researchers who want to write controllers or test learning algorithms without the delays and overhead that usually comes with other simulators (e.g., Gazebo, Coppelia-sim).

Documentation

Documentation is available at: https://nosalro.github.io/robot_dart/

Authors

  • Author/Maintainer: Konstantinos Chatzilygeroudis (University of Patras)
  • Active contributors: Dionis Totsila (Inria and University of Patras), Jean-Baptiste Mouret (Inria)
  • Other contributors: Antoine Cully, Vassilis Vassiliades, Vaios Papaspyros

Citing RobotDART

If you use this code in a scientific publication, please use the following citation:

bibtex @article{chatzilygeroudis2024robot, title={{RobotDART: a versatile robot simulator for robotics and machine learning researchers}}, author={Chatzilygeroudis, Konstantinos and Dionis, Totsila and Mouret, Jean-Baptiste}, year={2024}, booktitle={{Preprint (Submitted to JOSS)}} }

Acknowledgments

This work was supported by the Hellenic Foundation for Research and Innovation (H.F.R.I.) under the "3rd Call for H.F.R.I. Research Projects to support Post-Doctoral Researchers" (Project Acronym: NOSALRO, Project Number: 7541).

logo_elidek

This work was conducted within the [Laboratory of Automation and Robotics](https://lar.ece.upatras.gr/) (LAR), Department of Electrical and Computer Engineering, and the [Computational Intelligence Lab](http://cilab.math.upatras.gr/) (CILab), Department of Mathematics at the University of Patras, Greece.

logo_lar
logo_cilab logo_upatras

Contributing

Check out our contribution guidelines to get started.

License

BSD 2-Clause "Simplified" License

Scientific Publications using RobotDART (indicative list, ordered by date)

  1. Anne, T. and Mouret, J.B., 2024. Parametric-Task MAP-Elites. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO). (pdf)

  2. Ivaldi, S. and Ghini, E., 2023, June. Teleoperating a robot for removing asbestos tiles on roofs: insights from a pilot study. In 2023 IEEE International Conference on Advanced Robotics and Its Social Impacts (ARSO) (pp. 128-133). IEEE. (pdf)

  3. Khadivar, F., Chatzilygeroudis, K. and Billard, A., 2023. Self-correcting quadratic programming-based robot control. IEEE Transactions on Systems, Man, and Cybernetics: Systems. (pdf)

  4. Souza, A.O., Grenier, J., Charpillet, F., Maurice, P. and Ivaldi, S., 2023, June. Towards data-driven predictive control of active upper-body exoskeletons for load carrying. In 2023 IEEE International Conference on Advanced Robotics and Its Social Impacts (ARSO) (pp. 59-64). IEEE. (pdf)

  5. Chatzilygeroudis, K.I., Tsakonas, C.G. and Vrahatis, M.N., 2023, July. Evolving Dynamic Locomotion Policies in Minutes. In 2023 14th International Conference on Information, Intelligence, Systems & Applications (IISA) (pp. 1-8). IEEE. (pdf)

  6. Tsakonas, C.G. and Chatzilygeroudis, K.I., 2023, July. Effective Skill Learning via Autonomous Goal Representation Learning. In 2023 14th International Conference on Information, Intelligence, Systems & Applications (IISA) (pp. 1-8). IEEE. (pdf)

  7. Totsila, D., Chatzilygeroudis, K., Hadjivelichkov, D., Modugno, V., Hatzilygeroudis, I. and Kanoulas, D., 2023. End-to-End Stable Imitation Learning via Autonomous Neural Dynamic Policies. Life-Long Learning with Human Help (L3H2) Workshop, ICRA. (pdf)

  8. Allard, M., Smith, S.C., Chatzilygeroudis, K., Lim, B. and Cully, A., 2023. Online damage recovery for physical robots with hierarchical quality-diversity. ACM Transactions on Evolutionary Learning, 3(2), pp.1-23. (pdf)

  9. Anne, T., Dalin, E., Bergonzani, I., Ivaldi, S. and Mouret, J.B., 2022. First do not fall: learning to exploit a wall with a damaged humanoid robot. IEEE Robotics and Automation Letters, 7(4), pp.9028-9035. (pdf)

  10. Mayr, M., Ahmad, F., Chatzilygeroudis, K., Nardi, L. and Krueger, V., 2022, December. Skill-based multi-objective reinforcement learning of industrial robot tasks with planning and knowledge integration. In 2022 IEEE International Conference on Robotics and Biomimetics (ROBIO) (pp. 1995-2002). IEEE. (pdf)

  11. Grillotti, L. and Cully, A., 2022. Unsupervised behavior discovery with quality-diversity optimization. IEEE Transactions on Evolutionary Computation, 26(6), pp.1539-1552. (pdf)

  12. Lim, B., Grillotti, L., Bernasconi, L. and Cully, A., 2022, May. Dynamics-aware quality-diversity for efficient learning of skill repertoires. In 2022 International Conference on Robotics and Automation (ICRA) (pp. 5360-5366). IEEE. (pdf)

  13. Tsinganos, K., Chatzilygeroudis, K., Hadjivelichkov, D., Komninos, T., Dermatas, E. and Kanoulas, D., 2022. Behavior policy learning: Learning multi-stage tasks via solution sketches and model-based controllers. Frontiers in Robotics and AI, 9, p.974537. (pdf)

  14. d'Elia, E., Mouret, J.B., Kober, J. and Ivaldi, S., 2022, October. Automatic tuning and selection of whole-body controllers. In 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 12935-12941). IEEE. (pdf)

  15. Mayr, M., Hvarfner, C., Chatzilygeroudis, K., Nardi, L. and Krueger, V., 2022, August. Learning skill-based industrial robot tasks with user priors. In 2022 IEEE 18th International Conference on Automation Science and Engineering (CASE) (pp. 1485-1492). IEEE. (pdf)

  16. Allard, M., Smith, S.C., Chatzilygeroudis, K. and Cully, A., 2022, July. Hierarchical quality-diversity for online damage recovery. In Proceedings of the Genetic and Evolutionary Computation Conference (pp. 58-67). (pdf)

  17. Mayr, M., Ahmad, F., Chatzilygeroudis, K., Nardi, L. and Krueger, V., 2022. Combining planning, reasoning and reinforcement learning to solve industrial robot tasks. 2nd Workshop on Trends and Advances in Machine Learning and Automated Reasoning for Intelligent Robots and Systems, IROS. (pdf)

  18. Cully, A., 2021, June. Multi-emitter map-elites: improving quality, diversity and data efficiency with heterogeneous sets of emitters. In Proceedings of the Genetic and Evolutionary Computation Conference (pp. 84-92). (pdf)

  19. Mayr, M., Chatzilygeroudis, K., Ahmad, F., Nardi, L. and Krueger, V., 2021, September. Learning of parameters in behavior trees for movement skills. In 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 7572-7579). IEEE. (pdf)

  20. Penco, L., Hoffman, E.M., Modugno, V., Gomes, W., Mouret, J.B. and Ivaldi, S., 2020. Learning robust task priorities and gains for control of redundant robots. IEEE Robotics and Automation Letters, 5(2), pp.2626-2633. (pdf)

  21. Flageat, M. and Cully, A., 2020, July. Fast and stable MAP-Elites in noisy domains using deep grids. In Artificial Life Conference Proceedings 32 (pp. 273-282). One Rogers Street, Cambridge, MA 02142-1209, USA journals-info@ mit. edu: MIT Press. (pdf)

  22. Paul, S., Chatzilygeroudis, K., Ciosek, K., Mouret, J.B., Osborne, M.A. and Whiteson, S., 2020. Robust reinforcement learning with Bayesian optimisation and quadrature. Journal of Machine Learning Research, 21(151), pp.1-31. (pdf)

  23. Chatzilygeroudis, K., Vassiliades, V. and Mouret, J.B., 2018. Reset-free trial-and-error learning for robot damage recovery. Robotics and Autonomous Systems, 100, pp.236-250. (pdf)

  24. Pautrat, R., Chatzilygeroudis, K. and Mouret, J.B., 2018, May. Bayesian optimization with automatic prior selection for data-efficient direct policy search. In 2018 IEEE International Conference on Robotics and Automation (ICRA) (pp. 7571-7578). IEEE. (pdf)

  25. Chatzilygeroudis, K. and Mouret, J.B., 2018, May. Using parameterized black-box priors to scale up model-based policy search for robotics. In 2018 IEEE international conference on robotics and automation (ICRA) (pp. 5121-5128). IEEE. (pdf)

  26. Paul, S., Chatzilygeroudis, K., Ciosek, K., Mouret, J.B., Osborne, M. and Whiteson, S., 2018, April. Alternating optimisation and quadrature for robust control. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). (pdf)

  27. Kaushik, R., Chatzilygeroudis, K. and Mouret, J.B., 2018, October. Multi-objective model-based policy search for data-efficient learning with sparse rewards. In Conference on Robot Learning (pp. 839-855). PMLR. (pdf)

  28. Vassiliades, V., Chatzilygeroudis, K. and Mouret, J.B., 2017. Using centroidal voronoi tessellations to scale up the multidimensional archive of phenotypic elites algorithm. IEEE Transactions on Evolutionary Computation, 22(4), pp.623-630. (pdf)

  29. Mouret, J.B. and Chatzilygeroudis, K., 2017, July. 20 years of reality gap: a few thoughts about simulators in evolutionary robotics. In Proceedings of the genetic and evolutionary computation conference companion (pp. 1121-1124). (pdf)

  30. Papaspyros, V., Chatzilygeroudis, K., Vassiliades, V. and Mouret, J.B., 2016. Safety-aware robot damage recovery using constrained bayesian optimization and simulated priors. BayesOpt '16: Proceedings of the International Workshop "Bayesian Optimization: Black-box Optimization and Beyond", NeurIPS. (pdf)

  31. Chatzilygeroudis, K., Cully, A. and Mouret, J.B., 2016. Towards semi-episodic learning for robot damage recovery. AILTA '16: Proceedings of the International Workshop "AI for Long-term Autonomy", ICRA. (pdf)

Owner

  • Name: NOSALRO
  • Login: NOSALRO
  • Kind: organization
  • Email: costashatz@upatras.gr
  • Location: Greece

Novel Optimization Methods for Autonomous Skill Learning in Robotics - H.F.R.I. Project 2022-2024

JOSS Publication

RobotDART: a versatile robot simulator for robotics and machine learning researchers
Published
October 24, 2024
Volume 9, Issue 102, Page 6771
Authors
Konstantinos Chatzilygeroudis ORCID
Laboratory of Automation and Robotics (LAR), Department of Electrical & Computer Engineering, University of Patras, Greece, Computational Intelligence Lab (CILab), Department of Mathematics, University of Patras, Greece
Dionis Totsila ORCID
Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France, Computer Engineering and Informatics Department (CEID), University of Patras, Greece
Jean-Baptiste Mouret ORCID
Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France
Editor
Sébastien Boisgérault ORCID
Tags
Robot simulator Robotics Machine Learning

GitHub Events

Total
  • Watch event: 6
  • Member event: 1
  • Push event: 3
  • Pull request event: 2
  • Fork event: 1
  • Create event: 2
Last Year
  • Watch event: 6
  • Member event: 1
  • Push event: 3
  • Pull request event: 2
  • Fork event: 1
  • Create event: 2

Committers

Last synced: 5 months ago

All Time
  • Total Commits: 1,354
  • Total Committers: 20
  • Avg Commits per committer: 67.7
  • Development Distribution Score (DDS): 0.301
Past Year
  • Commits: 52
  • Committers: 3
  • Avg Commits per committer: 17.333
  • Development Distribution Score (DDS): 0.288
Top Committers
Name Email Commits
Konstantinos Chatzilygeroudis c****z@g****m 946
Jean-Baptiste Mouret j****t@i****r 222
DionisTotsila s****2@c****r 82
Vaios Papaspyros b****s@g****m 18
eloise e****n@i****r 17
Antoine Cully a****y@i****k 14
dinies e****i@l****t 14
Ivan Bergonzani i****i@o****m 14
Dorian Goepp d****p@i****r 6
kostastsing k****4@g****m 6
jspitz j****z@i****r 3
Matthias Mayr m****r@c****e 2
Olivier Rochel o****l@i****r 2
Pierre Desreumaux p****x@i****r 2
Sébastien Boisgérault S****t@g****m 1
Vassilis Vassiliades v****s@g****m 1
artificialsimon 3****n 1
itUserName i****l 1
Erick Kramer e****r@f****e 1
kounelisagis k****s@g****m 1
Committer Domains (Top 20 + Academic)

Issues and Pull Requests

Last synced: 4 months ago

All Time
  • Total issues: 34
  • Total pull requests: 71
  • Average time to close issues: 7 months
  • Average time to close pull requests: about 1 month
  • Total issue authors: 8
  • Total pull request authors: 13
  • Average comments per issue: 2.91
  • Average comments per pull request: 1.31
  • Merged pull requests: 62
  • Bot issues: 0
  • Bot pull requests: 0
Past Year
  • Issues: 1
  • Pull requests: 7
  • Average time to close issues: N/A
  • Average time to close pull requests: 4 days
  • Issue authors: 1
  • Pull request authors: 5
  • Average comments per issue: 0.0
  • Average comments per pull request: 0.0
  • Merged pull requests: 3
  • Bot issues: 0
  • Bot pull requests: 0
Top Authors
Issue Authors
  • costashatz (13)
  • c-joly (12)
  • jbmouret (6)
  • pngsyr (1)
  • IIIIIIIIll (1)
  • Timothee-ANNE (1)
  • im-Kitsch (1)
  • bstanciulescu (1)
Pull Request Authors
  • costashatz (48)
  • jbmouret (11)
  • dtotsila (4)
  • dalinel (3)
  • kounelisagis (3)
  • c-joly (2)
  • dinies (2)
  • olivierrochel-inria (2)
  • boisgera (2)
  • anhurion (2)
  • artificialsimon (1)
  • matthias-mayr (1)
  • kostastsing (1)
Top Labels
Issue Labels
bug (5) enhancement (5) question (1)
Pull Request Labels
bug (3) enhancement (2)

Dependencies

.github/workflows/ci_linux.yml actions
  • actions/cache v2 composite
  • actions/checkout v2 composite
.github/workflows/ci_linux_dart.yml actions
  • actions/cache v2 composite
  • actions/checkout v2 composite
.github/workflows/ci_mac.yml actions
  • actions/checkout v4 composite