Science Score: 64.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
✓CITATION.cff file
Found CITATION.cff file -
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
○DOI references
-
✓Academic publication links
Links to: zenodo.org -
✓Committers with academic emails
3 of 269 committers (1.1%) from academic institutions -
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (8.7%) to scientific vocabulary
Keywords
Keywords from Contributors
Repository
Ultralytics YOLO 🚀
Basic Info
- Host: GitHub
- Owner: ultralytics
- License: agpl-3.0
- Language: Python
- Default Branch: main
- Homepage: https://docs.ultralytics.com
- Size: 33.4 MB
Statistics
- Stars: 44,929
- Watchers: 217
- Forks: 8,770
- Open Issues: 363
- Releases: 0
Topics
Metadata Files
README.md
Ultralytics creates cutting-edge, state-of-the-art (SOTA) YOLO models built on years of foundational research in computer vision and AI. Constantly updated for performance and flexibility, our models are fast, accurate, and easy to use. They excel at object detection, tracking, instance segmentation, image classification, and pose estimation tasks.
Find detailed documentation in the Ultralytics Docs. Get support via GitHub Issues. Join discussions on Discord, Reddit, and the Ultralytics Community Forums!
Request an Enterprise License for commercial use at Ultralytics Licensing.
📄 Documentation
See below for quickstart installation and usage examples. For comprehensive guidance on training, validation, prediction, and deployment, refer to our full Ultralytics Docs.
Install
Install the `ultralytics` package, including all [requirements](https://github.com/ultralytics/ultralytics/blob/main/pyproject.toml), in a [**Python>=3.8**](https://www.python.org/) environment with [**PyTorch>=1.8**](https://pytorch.org/get-started/locally/). [](https://pypi.org/project/ultralytics/) [](https://clickpy.clickhouse.com/dashboard/ultralytics) [](https://pypi.org/project/ultralytics/) ```bash pip install ultralytics ``` For alternative installation methods, including [Conda](https://anaconda.org/conda-forge/ultralytics), [Docker](https://hub.docker.com/r/ultralytics/ultralytics), and building from source via Git, please consult the [Quickstart Guide](https://docs.ultralytics.com/quickstart/). [](https://anaconda.org/conda-forge/ultralytics) [](https://hub.docker.com/r/ultralytics/ultralytics) [](https://hub.docker.com/r/ultralytics/ultralytics)Usage
### CLI You can use Ultralytics YOLO directly from the Command Line Interface (CLI) with the `yolo` command: ```bash # Predict using a pretrained YOLO model (e.g., YOLO11n) on an image yolo predict model=yolo11n.pt source='https://ultralytics.com/images/bus.jpg' ``` The `yolo` command supports various tasks and modes, accepting additional arguments like `imgsz=640`. Explore the YOLO [CLI Docs](https://docs.ultralytics.com/usage/cli/) for more examples. ### Python Ultralytics YOLO can also be integrated directly into your Python projects. It accepts the same [configuration arguments](https://docs.ultralytics.com/usage/cfg/) as the CLI: ```python from ultralytics import YOLO # Load a pretrained YOLO11n model model = YOLO("yolo11n.pt") # Train the model on the COCO8 dataset for 100 epochs train_results = model.train( data="coco8.yaml", # Path to dataset configuration file epochs=100, # Number of training epochs imgsz=640, # Image size for training device="cpu", # Device to run on (e.g., 'cpu', 0, [0,1,2,3]) ) # Evaluate the model's performance on the validation set metrics = model.val() # Perform object detection on an image results = model("path/to/image.jpg") # Predict on an image results[0].show() # Display results # Export the model to ONNX format for deployment path = model.export(format="onnx") # Returns the path to the exported model ``` Discover more examples in the YOLO [Python Docs](https://docs.ultralytics.com/usage/python/).✨ Models
Ultralytics supports a wide range of YOLO models, from early versions like YOLOv3 to the latest YOLO11. The tables below showcase YOLO11 models pretrained on the COCO dataset for Detection, Segmentation, and Pose Estimation. Additionally, Classification models pretrained on the ImageNet dataset are available. Tracking mode is compatible with all Detection, Segmentation, and Pose models. All Models are automatically downloaded from the latest Ultralytics release upon first use.
Detection (COCO)
Explore the [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usage examples. These models are trained on the [COCO dataset](https://cocodataset.org/), featuring 80 object classes. | Model | size(pixels) | mAPval
50-95 | Speed
CPU ONNX
(ms) | Speed
T4 TensorRT10
(ms) | params
(M) | FLOPs
(B) | | ------------------------------------------------------------------------------------ | --------------------- | -------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- | | [YOLO11n](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n.pt) | 640 | 39.5 | 56.1 ± 0.8 | 1.5 ± 0.0 | 2.6 | 6.5 | | [YOLO11s](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s.pt) | 640 | 47.0 | 90.0 ± 1.2 | 2.5 ± 0.0 | 9.4 | 21.5 | | [YOLO11m](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m.pt) | 640 | 51.5 | 183.2 ± 2.0 | 4.7 ± 0.1 | 20.1 | 68.0 | | [YOLO11l](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l.pt) | 640 | 53.4 | 238.6 ± 1.4 | 6.2 ± 0.1 | 25.3 | 86.9 | | [YOLO11x](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x.pt) | 640 | 54.7 | 462.8 ± 6.7 | 11.3 ± 0.2 | 56.9 | 194.9 | - **mAPval** values refer to single-model single-scale performance on the [COCO val2017](https://cocodataset.org/) dataset. See [YOLO Performance Metrics](https://docs.ultralytics.com/guides/yolo-performance-metrics/) for details.
Reproduce with `yolo val detect data=coco.yaml device=0` - **Speed** metrics are averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export.
Reproduce with `yolo val detect data=coco.yaml batch=1 device=0|cpu`
Segmentation (COCO)
Refer to the [Segmentation Docs](https://docs.ultralytics.com/tasks/segment/) for usage examples. These models are trained on [COCO-Seg](https://docs.ultralytics.com/datasets/segment/coco/), including 80 classes. | Model | size(pixels) | mAPbox
50-95 | mAPmask
50-95 | Speed
CPU ONNX
(ms) | Speed
T4 TensorRT10
(ms) | params
(M) | FLOPs
(B) | | -------------------------------------------------------------------------------------------- | --------------------- | -------------------- | --------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- | | [YOLO11n-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-seg.pt) | 640 | 38.9 | 32.0 | 65.9 ± 1.1 | 1.8 ± 0.0 | 2.9 | 10.4 | | [YOLO11s-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-seg.pt) | 640 | 46.6 | 37.8 | 117.6 ± 4.9 | 2.9 ± 0.0 | 10.1 | 35.5 | | [YOLO11m-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-seg.pt) | 640 | 51.5 | 41.5 | 281.6 ± 1.2 | 6.3 ± 0.1 | 22.4 | 123.3 | | [YOLO11l-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-seg.pt) | 640 | 53.4 | 42.9 | 344.2 ± 3.2 | 7.8 ± 0.2 | 27.6 | 142.2 | | [YOLO11x-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-seg.pt) | 640 | 54.7 | 43.8 | 664.5 ± 3.2 | 15.8 ± 0.7 | 62.1 | 319.0 | - **mAPval** values are for single-model single-scale on the [COCO val2017](https://cocodataset.org/) dataset. See [YOLO Performance Metrics](https://docs.ultralytics.com/guides/yolo-performance-metrics/) for details.
Reproduce with `yolo val segment data=coco.yaml device=0` - **Speed** metrics are averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export.
Reproduce with `yolo val segment data=coco.yaml batch=1 device=0|cpu`
Classification (ImageNet)
Consult the [Classification Docs](https://docs.ultralytics.com/tasks/classify/) for usage examples. These models are trained on [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/), covering 1000 classes. | Model | size(pixels) | acc
top1 | acc
top5 | Speed
CPU ONNX
(ms) | Speed
T4 TensorRT10
(ms) | params
(M) | FLOPs
(B) at 224 | | -------------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | ------------------------------ | ----------------------------------- | ------------------ | ------------------------ | | [YOLO11n-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-cls.pt) | 224 | 70.0 | 89.4 | 5.0 ± 0.3 | 1.1 ± 0.0 | 1.6 | 0.5 | | [YOLO11s-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-cls.pt) | 224 | 75.4 | 92.7 | 7.9 ± 0.2 | 1.3 ± 0.0 | 5.5 | 1.6 | | [YOLO11m-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-cls.pt) | 224 | 77.3 | 93.9 | 17.2 ± 0.4 | 2.0 ± 0.0 | 10.4 | 5.0 | | [YOLO11l-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-cls.pt) | 224 | 78.3 | 94.3 | 23.2 ± 0.3 | 2.8 ± 0.0 | 12.9 | 6.2 | | [YOLO11x-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-cls.pt) | 224 | 79.5 | 94.9 | 41.4 ± 0.9 | 3.8 ± 0.0 | 28.4 | 13.7 | - **acc** values represent model accuracy on the [ImageNet](https://www.image-net.org/) dataset validation set.
Reproduce with `yolo val classify data=path/to/ImageNet device=0` - **Speed** metrics are averaged over ImageNet val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export.
Reproduce with `yolo val classify data=path/to/ImageNet batch=1 device=0|cpu`
Pose (COCO)
See the [Pose Estimation Docs](https://docs.ultralytics.com/tasks/pose/) for usage examples. These models are trained on [COCO-Pose](https://docs.ultralytics.com/datasets/pose/coco/), focusing on the 'person' class. | Model | size(pixels) | mAPpose
50-95 | mAPpose
50 | Speed
CPU ONNX
(ms) | Speed
T4 TensorRT10
(ms) | params
(M) | FLOPs
(B) | | ---------------------------------------------------------------------------------------------- | --------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- | | [YOLO11n-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-pose.pt) | 640 | 50.0 | 81.0 | 52.4 ± 0.5 | 1.7 ± 0.0 | 2.9 | 7.6 | | [YOLO11s-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-pose.pt) | 640 | 58.9 | 86.3 | 90.5 ± 0.6 | 2.6 ± 0.0 | 9.9 | 23.2 | | [YOLO11m-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-pose.pt) | 640 | 64.9 | 89.4 | 187.3 ± 0.8 | 4.9 ± 0.1 | 20.9 | 71.7 | | [YOLO11l-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-pose.pt) | 640 | 66.1 | 89.9 | 247.7 ± 1.1 | 6.4 ± 0.1 | 26.2 | 90.7 | | [YOLO11x-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-pose.pt) | 640 | 69.5 | 91.1 | 488.0 ± 13.9 | 12.1 ± 0.2 | 58.8 | 203.3 | - **mAPval** values are for single-model single-scale on the [COCO Keypoints val2017](https://docs.ultralytics.com/datasets/pose/coco/) dataset. See [YOLO Performance Metrics](https://docs.ultralytics.com/guides/yolo-performance-metrics/) for details.
Reproduce with `yolo val pose data=coco-pose.yaml device=0` - **Speed** metrics are averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export.
Reproduce with `yolo val pose data=coco-pose.yaml batch=1 device=0|cpu`
Oriented Bounding Boxes (DOTAv1)
Check the [OBB Docs](https://docs.ultralytics.com/tasks/obb/) for usage examples. These models are trained on [DOTAv1](https://docs.ultralytics.com/datasets/obb/dota-v2/#dota-v10/), including 15 classes. | Model | size(pixels) | mAPtest
50 | Speed
CPU ONNX
(ms) | Speed
T4 TensorRT10
(ms) | params
(M) | FLOPs
(B) | | -------------------------------------------------------------------------------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- | | [YOLO11n-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-obb.pt) | 1024 | 78.4 | 117.6 ± 0.8 | 4.4 ± 0.0 | 2.7 | 17.2 | | [YOLO11s-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-obb.pt) | 1024 | 79.5 | 219.4 ± 4.0 | 5.1 ± 0.0 | 9.7 | 57.5 | | [YOLO11m-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-obb.pt) | 1024 | 80.9 | 562.8 ± 2.9 | 10.1 ± 0.4 | 20.9 | 183.5 | | [YOLO11l-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-obb.pt) | 1024 | 81.0 | 712.5 ± 5.0 | 13.5 ± 0.6 | 26.2 | 232.0 | | [YOLO11x-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-obb.pt) | 1024 | 81.3 | 1408.6 ± 7.7 | 28.6 ± 1.0 | 58.8 | 520.2 | - **mAPtest** values are for single-model multiscale performance on the [DOTAv1 test set](https://captain-whu.github.io/DOTA/dataset.html).
Reproduce by `yolo val obb data=DOTAv1.yaml device=0 split=test` and submit merged results to the [DOTA evaluation server](https://captain-whu.github.io/DOTA/evaluation.html). - **Speed** metrics are averaged over [DOTAv1 val images](https://docs.ultralytics.com/datasets/obb/dota-v2/#dota-v10) using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export.
Reproduce by `yolo val obb data=DOTAv1.yaml batch=1 device=0|cpu`
🧩 Integrations
Our key integrations with leading AI platforms extend the functionality of Ultralytics' offerings, enhancing tasks like dataset labeling, training, visualization, and model management. Discover how Ultralytics, in collaboration with partners like Weights & Biases, Comet ML, Roboflow, and Intel OpenVINO, can optimize your AI workflow. Explore more at Ultralytics Integrations.
| Ultralytics HUB 🌟 | Weights & Biases | Comet | Neural Magic | | :-----------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------: | | Streamline YOLO workflows: Label, train, and deploy effortlessly with Ultralytics HUB. Try now! | Track experiments, hyperparameters, and results with Weights & Biases. | Free forever, Comet ML lets you save YOLO models, resume training, and interactively visualize predictions. | Run YOLO inference up to 6x faster with Neural Magic DeepSparse. |
🌟 Ultralytics HUB
Experience seamless AI with Ultralytics HUB, the all-in-one platform for data visualization, training YOLO models, and deployment—no coding required. Transform images into actionable insights and bring your AI visions to life effortlessly using our cutting-edge platform and user-friendly Ultralytics App. Start your journey for Free today!
🤝 Contribute
We thrive on community collaboration! Ultralytics YOLO wouldn't be the SOTA framework it is without contributions from developers like you. Please see our Contributing Guide to get started. We also welcome your feedback—share your experience by completing our Survey. A huge Thank You 🙏 to everyone who contributes!
We look forward to your contributions to help make the Ultralytics ecosystem even better!
📜 License
Ultralytics offers two licensing options to suit different needs:
- AGPL-3.0 License: This OSI-approved open-source license is perfect for students, researchers, and enthusiasts. It encourages open collaboration and knowledge sharing. See the LICENSE file for full details.
- Ultralytics Enterprise License: Designed for commercial use, this license allows for the seamless integration of Ultralytics software and AI models into commercial products and services, bypassing the open-source requirements of AGPL-3.0. If your use case involves commercial deployment, please contact us via Ultralytics Licensing.
📞 Contact
For bug reports and feature requests related to Ultralytics software, please visit GitHub Issues. For questions, discussions, and community support, join our active communities on Discord, Reddit, and the Ultralytics Community Forums. We're here to help with all things Ultralytics!
Owner
- Name: Ultralytics
- Login: ultralytics
- Kind: organization
- Email: hello@ultralytics.com
- Location: United States of America
- Website: https://ultralytics.com
- Twitter: ultralytics
- Repositories: 14
- Profile: https://github.com/ultralytics
Simpler. Smarter. Further.
Citation (CITATION.cff)
# This CITATION.cff file was generated with https://bit.ly/cffinit
cff-version: 1.2.0
title: Ultralytics YOLO
message: >-
If you use this software, please cite it using the
metadata from this file.
type: software
authors:
- given-names: Glenn
family-names: Jocher
affiliation: Ultralytics
orcid: "https://orcid.org/0000-0001-5950-6979"
- family-names: Qiu
given-names: Jing
affiliation: Ultralytics
orcid: "https://orcid.org/0000-0003-3783-7069"
- given-names: Ayush
family-names: Chaurasia
affiliation: Ultralytics
orcid: "https://orcid.org/0000-0002-7603-6750"
repository-code: "https://github.com/ultralytics/ultralytics"
url: "https://ultralytics.com"
license: AGPL-3.0
version: 8.0.0
date-released: "2023-01-10"
Committers
Last synced: 7 months ago
Top Committers
| Name | Commits | |
|---|---|---|
| Glenn Jocher | g****r@u****m | 1,188 |
| Muhammad Rizwan Munawar | m****3@g****m | 316 |
| Laughing | 6****q | 211 |
| Mohammed Yasin | 3****G | 188 |
| Lakshantha Dissanayake | l****d@y****m | 96 |
| Ayush Chaurasia | a****a@g****m | 83 |
| Burhan | 6****Q | 48 |
| Francesco Mattioli | F****l@g****m | 46 |
| Abirami Vina | a****a@g****m | 35 |
| Jan Knobloch | 1****e | 28 |
| Ultralytics Assistant | 1****t | 23 |
| dependabot[bot] | 4****] | 23 |
| Sergiu Waxmann | 4****n | 18 |
| Kayzwer | 6****r | 13 |
| Paula Derrenger | 1****r | 13 |
| Ivor Zhu | 1****1 | 5 |
| Iaroslav Omelianenko | y****l@y****m | 5 |
| Kalen Michael | k****e@g****m | 5 |
| Adrian Boguszewski | a****i@i****m | 5 |
| Skillnoob | 7****b | 5 |
| fatih c. akyon | 3****n | 5 |
| Ivan Shcheklein | s****n@g****m | 4 |
| Jamjamjon | 5****n | 4 |
| MatthewNoyce | 1****e | 4 |
| inisis | 4****s | 4 |
| Colin Wong | c****h@g****m | 4 |
| Onuralp SEZER | t****r@g****m | 4 |
| Awsome | 1****7@q****m | 4 |
| triple Mu | g****u@1****m | 4 |
| Quet Almahdi Morris | m****l@g****m | 3 |
| and 239 more... | ||
Committer Domains (Top 20 + Academic)
Issues and Pull Requests
Last synced: 4 months ago
All Time
- Total issues: 9,719
- Total pull requests: 4,893
- Average time to close issues: about 1 month
- Average time to close pull requests: 25 days
- Total issue authors: 5,855
- Total pull request authors: 760
- Average comments per issue: 5.0
- Average comments per pull request: 3.82
- Merged pull requests: 2,687
- Bot issues: 4
- Bot pull requests: 72
Past Year
- Issues: 2,971
- Pull requests: 2,641
- Average time to close issues: about 1 month
- Average time to close pull requests: 5 days
- Issue authors: 2,016
- Pull request authors: 321
- Average comments per issue: 3.59
- Average comments per pull request: 3.63
- Merged pull requests: 1,497
- Bot issues: 1
- Bot pull requests: 37
Top Authors
Issue Authors
- monkeycc (58)
- Burhan-Q (45)
- guerreromcleod (44)
- tjasmin111 (37)
- glenn-jocher (29)
- Rasantis (28)
- sarpx (28)
- Ellohiye (27)
- pornpra (22)
- Sparklexa (18)
- Petros626 (18)
- anumhashmi (18)
- cainiao123s (17)
- darouwan (16)
- MasIgor (16)
Pull Request Authors
- glenn-jocher (1,202)
- RizwanMunawar (670)
- Y-T-G (355)
- Laughing-q (289)
- lakshanthad (179)
- ambitious-octopus (130)
- Burhan-Q (130)
- dependabot[bot] (69)
- Kayzwer (62)
- abirami-vina (52)
- jk4e (37)
- zanaries (32)
- AyushExel (27)
- developer0hye (27)
- UltralyticsAssistant (25)
Top Labels
Issue Labels
Pull Request Labels
Packages
- Total packages: 28
-
Total downloads:
- pypi 6,071,572 last-month
- Total docker downloads: 43,981
-
Total dependent packages: 177
(may contain duplicates) -
Total dependent repositories: 1,178
(may contain duplicates) - Total versions: 1,326
- Total maintainers: 19
pypi.org: ultralytics
Ultralytics YOLO 🚀 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
- Homepage: https://ultralytics.com
- Documentation: https://docs.ultralytics.com
- License: AGPL-3.0
-
Latest release: 8.3.61
published 12 months ago
Rankings
Maintainers (1)
pypi.org: ultralytics-dev
Ultralytics YOLOv8 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
- Homepage: https://github.com/ultralytics/ultralytics
- Documentation: https://ultralytics-dev.readthedocs.io/
- License: AGPL-3.0
-
Latest release: 0.0.55
published over 2 years ago
Rankings
Maintainers (1)
Funding
- https://ultralytics.com
pypi.org: yolotest
Ultralytics YOLOv8
- Homepage: https://github.com/ultralytics/ultralytics
- Documentation: https://yolotest.readthedocs.io/
- License: GPL-3.0
-
Latest release: 8.0.61
published over 2 years ago
Rankings
Maintainers (1)
Funding
- https://ultralytics.com
proxy.golang.org: github.com/ultralytics/ultralytics
- Documentation: https://pkg.go.dev/github.com/ultralytics/ultralytics#section-documentation
- License: agpl-3.0
-
Latest release: v8.3.189+incompatible
published 4 months ago
Rankings
pypi.org: syml-ultralytics
Ultralytics YOLO 🚀 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
- Homepage: https://ultralytics.com
- Documentation: https://docs.ultralytics.com
- License: AGPL-3.0
-
Latest release: 8.3.38
published about 1 year ago
Rankings
pypi.org: imagedetect
Ultralytics YOLOv8
- Homepage: https://github.com/ultralytics/ultralytics
- Documentation: https://imagedetect.readthedocs.io/
- License: GPL-3.0
-
Latest release: 8.0.57
published almost 3 years ago
Rankings
Maintainers (1)
Funding
- https://ultralytics.com
pypi.org: roar-yolo
Ultralytics YOLOv8
- Homepage: https://github.com/ultralytics/ultralytics
- Documentation: https://roar-yolo.readthedocs.io/
- License: GPL-3.0
-
Latest release: 9.0.0
published almost 3 years ago
Rankings
Maintainers (1)
Funding
- https://ultralytics.com
pypi.org: ultralytics-dist-yolo
Ultralytics YOLOv8 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
- Homepage: https://github.com/ultralytics/ultralytics
- Documentation: https://ultralytics-dist-yolo.readthedocs.io/
- License: AGPL-3.0
-
Latest release: 99.99
published over 2 years ago
Rankings
Maintainers (1)
Funding
- https://ultralytics.com
pypi.org: ultralytics-custom
Ultralytics YOLOv8 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
- Homepage: https://github.com/ultralytics/ultralytics
- Documentation: https://ultralytics-custom.readthedocs.io/
- License: AGPL-3.0
-
Latest release: 8.0.112
published over 2 years ago
Rankings
Maintainers (1)
Funding
- https://ultralytics.com
pypi.org: ppmmvehicle
Ultralytics YOLOv8 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
- Homepage: https://github.com/ultralytics/ultralytics
- Documentation: https://ppmmvehicle.readthedocs.io/
- License: AGPL-3.0
-
Latest release: 1.0.1
published over 2 years ago
Rankings
Maintainers (1)
Funding
- https://ultralytics.com
pypi.org: rknn-yolov8
自用rknn yolov8 版本 8.2.82 只修复了 weights_only=False 问题
- Documentation: https://rknn-yolov8.readthedocs.io/
- License: AGPL-3.0
-
Latest release: 8.2.82
published 5 months ago
Rankings
Maintainers (1)
Funding
- https://ultralytics.com
pypi.org: zmkj-rknn-yolov8
自用rknn yolov8 版本 只修复了 weights_only=False 问题 来源https://github.com/airockchip/ultralytics_yolov8 8.0.151 v1.6分支
- Homepage: https://github.com/ultralytics/ultralytics
- Documentation: https://zmkj-rknn-yolov8.readthedocs.io/
- License: AGPL-3.0
-
Latest release: 8.2.82
published 5 months ago
Rankings
Maintainers (1)
Funding
- https://ultralytics.com
spack.io: py-ultralytics
Ultralytics YOLOv8, developed by Ultralytics, is a cutting-edge, state- of-the-art (SOTA) model that builds upon the success of previous YOLO versions and introduces new features and improvements to further boost performance and flexibility. YOLOv8 is designed to be fast, accurate, and easy to use, making it an excellent choice for a wide range of object detection, image segmentation and image classification tasks.
- Homepage: https://github.com/ultralytics/ultralytics
- License: []
-
Latest release: 8.0.50
published almost 3 years ago
Rankings
Maintainers (1)
pypi.org: ultralytics-copy
- Documentation: https://ultralytics-copy.readthedocs.io/
- License: agpl-3.0
-
Latest release: 0.0.1.dev0
published over 2 years ago
Rankings
Maintainers (1)
Funding
- https://ultralytics.com
pypi.org: dgenerate-ultralytics-headless
Automatically built Ultralytics package with python-opencv-headless dependency instead of python-opencv
- Homepage: https://ultralytics.com
- Documentation: https://docs.ultralytics.com
- License: AGPL-3.0
-
Latest release: 8.3.192
published 4 months ago
Rankings
Maintainers (1)
pypi.org: ultralytics-headless
Ultralytics YOLO 🚀 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
- Homepage: https://ultralytics.com
- Documentation: https://docs.ultralytics.com
- License: AGPL-3.0
-
Latest release: 8.3.33
published about 1 year ago
Rankings
Maintainers (1)
pypi.org: ultralyticsheadless
Ultralytics YOLO 🚀 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
- Homepage: https://ultralytics.com
- Documentation: https://docs.ultralytics.com
- License: AGPL-3.0
-
Latest release: 8.3.33
published about 1 year ago
Rankings
Maintainers (1)
pypi.org: ultralytics-v11
Ultralytics YOLO for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
- Homepage: https://ultralytics.com
- Documentation: https://docs.ultralytics.com
- License: AGPL-3.0
-
Latest release: 8.3.9
published about 1 year ago
Rankings
Maintainers (1)
pypi.org: ultralytics-export-to-rknn
Ultralytics YOLOv8 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
- Documentation: https://ultralytics-export-to-rknn.readthedocs.io/
- License: AGPL-3.0
-
Latest release: 8.2.88
published over 1 year ago
Rankings
Maintainers (1)
Funding
- https://ultralytics.com
pypi.org: ultralytics-rknn-export
Ultralytics YOLOv8 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
- Documentation: https://ultralytics-rknn-export.readthedocs.io/
- License: AGPL-3.0
Rankings
Maintainers (1)
Funding
- https://ultralytics.com
pypi.org: ultralytics-yolov10-rknn
Ultralytics YOLOv8 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
- Documentation: https://ultralytics-yolov10-rknn.readthedocs.io/
- License: AGPL-3.0
-
Latest release: 8.1.34
published over 1 year ago
Rankings
Maintainers (1)
Funding
- https://ultralytics.com
pypi.org: ymsyolo10
Ultralytics YOLOv8 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
- Documentation: https://ymsyolo10.readthedocs.io/
- License: AGPL-3.0
-
Latest release: 8.1.34
published over 1 year ago
Rankings
Maintainers (1)
Funding
- https://ultralytics.com
pypi.org: ultralytics-rknn
Ultralytics YOLOv8 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
- Homepage: https://github.com/ultralytics/ultralytics
- Documentation: https://ultralytics-rknn.readthedocs.io/
- License: AGPL-3.0
-
Latest release: 12.0.1
published over 1 year ago
Rankings
Maintainers (1)
Funding
- https://ultralytics.com
pypi.org: yolov8-rknn
Ultralytics YOLOv8 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
- Homepage: https://github.com/ultralytics/ultralytics
- Documentation: https://yolov8-rknn.readthedocs.io/
- License: AGPL-3.0
-
Latest release: 8.0.151
published over 1 year ago
Rankings
Maintainers (1)
Funding
- https://ultralytics.com
pypi.org: yolov8-pose-triton
Ultralytics YOLOv8 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
- Documentation: https://yolov8-pose-triton.readthedocs.io/
- License: AGPL-3.0
-
Latest release: 8.2.0
published over 1 year ago
Rankings
Maintainers (1)
Funding
- https://ultralytics.com
pypi.org: simplelatexocr
A simple LaTeX OCR package
- Documentation: https://simplelatexocr.readthedocs.io/
- License: Apache-2.0
-
Latest release: 0.0.1
published almost 2 years ago
Rankings
Maintainers (1)
pypi.org: ultralyticsutils
My short description for my project.
- Homepage: https://github.com/ultralytics/ultralytics
- Documentation: https://ultralyticsutils.readthedocs.io/
- License: MIT
-
Latest release: 8.0.5
published over 1 year ago
Rankings
Maintainers (1)
pypi.org: xn-ultralytics
This is a public fork of Ultralytics YOLOv8 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification. Free for anyone to use, for non-commercial purposes.
- Homepage: https://github.com/ultralytics/ultralytics
- Documentation: https://xn-ultralytics.readthedocs.io/
- License: AGPL-3.0
-
Latest release: 8.0.119
published over 2 years ago
Rankings
Maintainers (1)
Funding
- https://ultralytics.com
Dependencies
- actions/cache v3 composite
- actions/checkout v3 composite
- actions/setup-python v4 composite
- contributor-assistant/github-action v2.2.0 composite
- actions/checkout v3 composite
- docker/build-push-action v3 composite
- docker/login-action v2 composite
- docker/setup-buildx-action v2 composite
- docker/setup-qemu-action v2 composite
- nvcr.io/nvidia/pytorch 22.12-py3 build
- GitPython >=3.1.24
- Pillow >=7.1.2
- PyYAML >=5.3.1
- hydra-core >=1.2.0
- ipython *
- matplotlib >=3.2.2
- numpy >=1.18.5
- opencv-python >=4.1.1
- pandas >=1.1.4
- psutil *
- requests >=2.23.0
- scipy >=1.4.1
- seaborn >=0.11.0
- tensorboard >=2.4.1
- thop >=0.1.1
- torch >=1.7.0
- torchvision >=0.8.1
- tqdm >=4.64.0
- actions/checkout v4 composite
- github/codeql-action/analyze v2 composite
- github/codeql-action/init v2 composite
- actions/first-interaction v1 composite
- actions/checkout v4 composite
- nick-invision/retry v2 composite
- actions/checkout v4 composite
- actions/setup-python v4 composite
- slackapi/slack-github-action v1.24.0 composite
- actions/stale v8 composite













