ultralytics

Ultralytics YOLO 🚀

https://github.com/ultralytics/ultralytics

Science Score: 64.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
    Found CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
  • Academic publication links
    Links to: zenodo.org
  • Committers with academic emails
    3 of 269 committers (1.1%) from academic institutions
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (8.7%) to scientific vocabulary

Keywords

cli computer-vision deep-learning hub image-classification instance-segmentation machine-learning object-detection pose-estimation python pytorch rotated-object-detection segment-anything tracking ultralytics yolo yolo-world yolo11 yolov10 yolov8

Keywords from Contributors

fine-tuning mesh text-to-speech voice-conversion agents hydrology mot cryptocurrencies pipeline-testing datacleaner
Last synced: 4 months ago · JSON representation ·

Repository

Ultralytics YOLO 🚀

Basic Info
  • Host: GitHub
  • Owner: ultralytics
  • License: agpl-3.0
  • Language: Python
  • Default Branch: main
  • Homepage: https://docs.ultralytics.com
  • Size: 33.4 MB
Statistics
  • Stars: 44,929
  • Watchers: 217
  • Forks: 8,770
  • Open Issues: 363
  • Releases: 0
Topics
cli computer-vision deep-learning hub image-classification instance-segmentation machine-learning object-detection pose-estimation python pytorch rotated-object-detection segment-anything tracking ultralytics yolo yolo-world yolo11 yolov10 yolov8
Created over 3 years ago · Last pushed 4 months ago
Metadata Files
Readme Contributing License Citation

README.md

Ultralytics YOLO banner

[中文](https://docs.ultralytics.com/zh/) | [한국어](https://docs.ultralytics.com/ko/) | [日本語](https://docs.ultralytics.com/ja/) | [Русский](https://docs.ultralytics.com/ru/) | [Deutsch](https://docs.ultralytics.com/de/) | [Français](https://docs.ultralytics.com/fr/) | [Español](https://docs.ultralytics.com/es) | [Português](https://docs.ultralytics.com/pt/) | [Türkçe](https://docs.ultralytics.com/tr/) | [Tiếng Việt](https://docs.ultralytics.com/vi/) | [العربية](https://docs.ultralytics.com/ar/)
Ultralytics CI Ultralytics Downloads Ultralytics YOLO Citation Ultralytics Discord Ultralytics Forums Ultralytics Reddit
Run Ultralytics on Gradient Open Ultralytics In Colab Open Ultralytics In Kaggle Open Ultralytics In Binder


Ultralytics creates cutting-edge, state-of-the-art (SOTA) YOLO models built on years of foundational research in computer vision and AI. Constantly updated for performance and flexibility, our models are fast, accurate, and easy to use. They excel at object detection, tracking, instance segmentation, image classification, and pose estimation tasks.

Find detailed documentation in the Ultralytics Docs. Get support via GitHub Issues. Join discussions on Discord, Reddit, and the Ultralytics Community Forums!

Request an Enterprise License for commercial use at Ultralytics Licensing.

YOLO11 performance plots

Ultralytics GitHub space Ultralytics LinkedIn space Ultralytics Twitter space Ultralytics YouTube space Ultralytics TikTok space Ultralytics BiliBili space Ultralytics Discord

📄 Documentation

See below for quickstart installation and usage examples. For comprehensive guidance on training, validation, prediction, and deployment, refer to our full Ultralytics Docs.

Install Install the `ultralytics` package, including all [requirements](https://github.com/ultralytics/ultralytics/blob/main/pyproject.toml), in a [**Python>=3.8**](https://www.python.org/) environment with [**PyTorch>=1.8**](https://pytorch.org/get-started/locally/). [![PyPI - Version](https://img.shields.io/pypi/v/ultralytics?logo=pypi&logoColor=white)](https://pypi.org/project/ultralytics/) [![Ultralytics Downloads](https://static.pepy.tech/badge/ultralytics)](https://clickpy.clickhouse.com/dashboard/ultralytics) [![PyPI - Python Version](https://img.shields.io/pypi/pyversions/ultralytics?logo=python&logoColor=gold)](https://pypi.org/project/ultralytics/) ```bash pip install ultralytics ``` For alternative installation methods, including [Conda](https://anaconda.org/conda-forge/ultralytics), [Docker](https://hub.docker.com/r/ultralytics/ultralytics), and building from source via Git, please consult the [Quickstart Guide](https://docs.ultralytics.com/quickstart/). [![Conda Version](https://img.shields.io/conda/vn/conda-forge/ultralytics?logo=condaforge)](https://anaconda.org/conda-forge/ultralytics) [![Docker Image Version](https://img.shields.io/docker/v/ultralytics/ultralytics?sort=semver&logo=docker)](https://hub.docker.com/r/ultralytics/ultralytics) [![Ultralytics Docker Pulls](https://img.shields.io/docker/pulls/ultralytics/ultralytics?logo=docker)](https://hub.docker.com/r/ultralytics/ultralytics)
Usage ### CLI You can use Ultralytics YOLO directly from the Command Line Interface (CLI) with the `yolo` command: ```bash # Predict using a pretrained YOLO model (e.g., YOLO11n) on an image yolo predict model=yolo11n.pt source='https://ultralytics.com/images/bus.jpg' ``` The `yolo` command supports various tasks and modes, accepting additional arguments like `imgsz=640`. Explore the YOLO [CLI Docs](https://docs.ultralytics.com/usage/cli/) for more examples. ### Python Ultralytics YOLO can also be integrated directly into your Python projects. It accepts the same [configuration arguments](https://docs.ultralytics.com/usage/cfg/) as the CLI: ```python from ultralytics import YOLO # Load a pretrained YOLO11n model model = YOLO("yolo11n.pt") # Train the model on the COCO8 dataset for 100 epochs train_results = model.train( data="coco8.yaml", # Path to dataset configuration file epochs=100, # Number of training epochs imgsz=640, # Image size for training device="cpu", # Device to run on (e.g., 'cpu', 0, [0,1,2,3]) ) # Evaluate the model's performance on the validation set metrics = model.val() # Perform object detection on an image results = model("path/to/image.jpg") # Predict on an image results[0].show() # Display results # Export the model to ONNX format for deployment path = model.export(format="onnx") # Returns the path to the exported model ``` Discover more examples in the YOLO [Python Docs](https://docs.ultralytics.com/usage/python/).

✨ Models

Ultralytics supports a wide range of YOLO models, from early versions like YOLOv3 to the latest YOLO11. The tables below showcase YOLO11 models pretrained on the COCO dataset for Detection, Segmentation, and Pose Estimation. Additionally, Classification models pretrained on the ImageNet dataset are available. Tracking mode is compatible with all Detection, Segmentation, and Pose models. All Models are automatically downloaded from the latest Ultralytics release upon first use.

Ultralytics YOLO supported tasks

Detection (COCO) Explore the [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usage examples. These models are trained on the [COCO dataset](https://cocodataset.org/), featuring 80 object classes. | Model | size
(pixels) | mAPval
50-95 | Speed
CPU ONNX
(ms) | Speed
T4 TensorRT10
(ms) | params
(M) | FLOPs
(B) | | ------------------------------------------------------------------------------------ | --------------------- | -------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- | | [YOLO11n](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n.pt) | 640 | 39.5 | 56.1 ± 0.8 | 1.5 ± 0.0 | 2.6 | 6.5 | | [YOLO11s](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s.pt) | 640 | 47.0 | 90.0 ± 1.2 | 2.5 ± 0.0 | 9.4 | 21.5 | | [YOLO11m](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m.pt) | 640 | 51.5 | 183.2 ± 2.0 | 4.7 ± 0.1 | 20.1 | 68.0 | | [YOLO11l](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l.pt) | 640 | 53.4 | 238.6 ± 1.4 | 6.2 ± 0.1 | 25.3 | 86.9 | | [YOLO11x](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x.pt) | 640 | 54.7 | 462.8 ± 6.7 | 11.3 ± 0.2 | 56.9 | 194.9 | - **mAPval** values refer to single-model single-scale performance on the [COCO val2017](https://cocodataset.org/) dataset. See [YOLO Performance Metrics](https://docs.ultralytics.com/guides/yolo-performance-metrics/) for details.
Reproduce with `yolo val detect data=coco.yaml device=0` - **Speed** metrics are averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export.
Reproduce with `yolo val detect data=coco.yaml batch=1 device=0|cpu`
Segmentation (COCO) Refer to the [Segmentation Docs](https://docs.ultralytics.com/tasks/segment/) for usage examples. These models are trained on [COCO-Seg](https://docs.ultralytics.com/datasets/segment/coco/), including 80 classes. | Model | size
(pixels) | mAPbox
50-95 | mAPmask
50-95 | Speed
CPU ONNX
(ms) | Speed
T4 TensorRT10
(ms) | params
(M) | FLOPs
(B) | | -------------------------------------------------------------------------------------------- | --------------------- | -------------------- | --------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- | | [YOLO11n-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-seg.pt) | 640 | 38.9 | 32.0 | 65.9 ± 1.1 | 1.8 ± 0.0 | 2.9 | 10.4 | | [YOLO11s-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-seg.pt) | 640 | 46.6 | 37.8 | 117.6 ± 4.9 | 2.9 ± 0.0 | 10.1 | 35.5 | | [YOLO11m-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-seg.pt) | 640 | 51.5 | 41.5 | 281.6 ± 1.2 | 6.3 ± 0.1 | 22.4 | 123.3 | | [YOLO11l-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-seg.pt) | 640 | 53.4 | 42.9 | 344.2 ± 3.2 | 7.8 ± 0.2 | 27.6 | 142.2 | | [YOLO11x-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-seg.pt) | 640 | 54.7 | 43.8 | 664.5 ± 3.2 | 15.8 ± 0.7 | 62.1 | 319.0 | - **mAPval** values are for single-model single-scale on the [COCO val2017](https://cocodataset.org/) dataset. See [YOLO Performance Metrics](https://docs.ultralytics.com/guides/yolo-performance-metrics/) for details.
Reproduce with `yolo val segment data=coco.yaml device=0` - **Speed** metrics are averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export.
Reproduce with `yolo val segment data=coco.yaml batch=1 device=0|cpu`
Classification (ImageNet) Consult the [Classification Docs](https://docs.ultralytics.com/tasks/classify/) for usage examples. These models are trained on [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/), covering 1000 classes. | Model | size
(pixels) | acc
top1 | acc
top5 | Speed
CPU ONNX
(ms) | Speed
T4 TensorRT10
(ms) | params
(M) | FLOPs
(B) at 224 | | -------------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | ------------------------------ | ----------------------------------- | ------------------ | ------------------------ | | [YOLO11n-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-cls.pt) | 224 | 70.0 | 89.4 | 5.0 ± 0.3 | 1.1 ± 0.0 | 1.6 | 0.5 | | [YOLO11s-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-cls.pt) | 224 | 75.4 | 92.7 | 7.9 ± 0.2 | 1.3 ± 0.0 | 5.5 | 1.6 | | [YOLO11m-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-cls.pt) | 224 | 77.3 | 93.9 | 17.2 ± 0.4 | 2.0 ± 0.0 | 10.4 | 5.0 | | [YOLO11l-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-cls.pt) | 224 | 78.3 | 94.3 | 23.2 ± 0.3 | 2.8 ± 0.0 | 12.9 | 6.2 | | [YOLO11x-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-cls.pt) | 224 | 79.5 | 94.9 | 41.4 ± 0.9 | 3.8 ± 0.0 | 28.4 | 13.7 | - **acc** values represent model accuracy on the [ImageNet](https://www.image-net.org/) dataset validation set.
Reproduce with `yolo val classify data=path/to/ImageNet device=0` - **Speed** metrics are averaged over ImageNet val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export.
Reproduce with `yolo val classify data=path/to/ImageNet batch=1 device=0|cpu`
Pose (COCO) See the [Pose Estimation Docs](https://docs.ultralytics.com/tasks/pose/) for usage examples. These models are trained on [COCO-Pose](https://docs.ultralytics.com/datasets/pose/coco/), focusing on the 'person' class. | Model | size
(pixels) | mAPpose
50-95 | mAPpose
50 | Speed
CPU ONNX
(ms) | Speed
T4 TensorRT10
(ms) | params
(M) | FLOPs
(B) | | ---------------------------------------------------------------------------------------------- | --------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- | | [YOLO11n-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-pose.pt) | 640 | 50.0 | 81.0 | 52.4 ± 0.5 | 1.7 ± 0.0 | 2.9 | 7.6 | | [YOLO11s-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-pose.pt) | 640 | 58.9 | 86.3 | 90.5 ± 0.6 | 2.6 ± 0.0 | 9.9 | 23.2 | | [YOLO11m-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-pose.pt) | 640 | 64.9 | 89.4 | 187.3 ± 0.8 | 4.9 ± 0.1 | 20.9 | 71.7 | | [YOLO11l-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-pose.pt) | 640 | 66.1 | 89.9 | 247.7 ± 1.1 | 6.4 ± 0.1 | 26.2 | 90.7 | | [YOLO11x-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-pose.pt) | 640 | 69.5 | 91.1 | 488.0 ± 13.9 | 12.1 ± 0.2 | 58.8 | 203.3 | - **mAPval** values are for single-model single-scale on the [COCO Keypoints val2017](https://docs.ultralytics.com/datasets/pose/coco/) dataset. See [YOLO Performance Metrics](https://docs.ultralytics.com/guides/yolo-performance-metrics/) for details.
Reproduce with `yolo val pose data=coco-pose.yaml device=0` - **Speed** metrics are averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export.
Reproduce with `yolo val pose data=coco-pose.yaml batch=1 device=0|cpu`
Oriented Bounding Boxes (DOTAv1) Check the [OBB Docs](https://docs.ultralytics.com/tasks/obb/) for usage examples. These models are trained on [DOTAv1](https://docs.ultralytics.com/datasets/obb/dota-v2/#dota-v10/), including 15 classes. | Model | size
(pixels) | mAPtest
50 | Speed
CPU ONNX
(ms) | Speed
T4 TensorRT10
(ms) | params
(M) | FLOPs
(B) | | -------------------------------------------------------------------------------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- | | [YOLO11n-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-obb.pt) | 1024 | 78.4 | 117.6 ± 0.8 | 4.4 ± 0.0 | 2.7 | 17.2 | | [YOLO11s-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-obb.pt) | 1024 | 79.5 | 219.4 ± 4.0 | 5.1 ± 0.0 | 9.7 | 57.5 | | [YOLO11m-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-obb.pt) | 1024 | 80.9 | 562.8 ± 2.9 | 10.1 ± 0.4 | 20.9 | 183.5 | | [YOLO11l-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-obb.pt) | 1024 | 81.0 | 712.5 ± 5.0 | 13.5 ± 0.6 | 26.2 | 232.0 | | [YOLO11x-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-obb.pt) | 1024 | 81.3 | 1408.6 ± 7.7 | 28.6 ± 1.0 | 58.8 | 520.2 | - **mAPtest** values are for single-model multiscale performance on the [DOTAv1 test set](https://captain-whu.github.io/DOTA/dataset.html).
Reproduce by `yolo val obb data=DOTAv1.yaml device=0 split=test` and submit merged results to the [DOTA evaluation server](https://captain-whu.github.io/DOTA/evaluation.html). - **Speed** metrics are averaged over [DOTAv1 val images](https://docs.ultralytics.com/datasets/obb/dota-v2/#dota-v10) using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export.
Reproduce by `yolo val obb data=DOTAv1.yaml batch=1 device=0|cpu`

🧩 Integrations

Our key integrations with leading AI platforms extend the functionality of Ultralytics' offerings, enhancing tasks like dataset labeling, training, visualization, and model management. Discover how Ultralytics, in collaboration with partners like Weights & Biases, Comet ML, Roboflow, and Intel OpenVINO, can optimize your AI workflow. Explore more at Ultralytics Integrations.

Ultralytics active learning integrations

Ultralytics HUB logo space Weights & Biases logo space Comet ML logo space Neural Magic logo

| Ultralytics HUB 🌟 | Weights & Biases | Comet | Neural Magic | | :-----------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------: | | Streamline YOLO workflows: Label, train, and deploy effortlessly with Ultralytics HUB. Try now! | Track experiments, hyperparameters, and results with Weights & Biases. | Free forever, Comet ML lets you save YOLO models, resume training, and interactively visualize predictions. | Run YOLO inference up to 6x faster with Neural Magic DeepSparse. |

🌟 Ultralytics HUB

Experience seamless AI with Ultralytics HUB, the all-in-one platform for data visualization, training YOLO models, and deployment—no coding required. Transform images into actionable insights and bring your AI visions to life effortlessly using our cutting-edge platform and user-friendly Ultralytics App. Start your journey for Free today!

Ultralytics HUB preview image

🤝 Contribute

We thrive on community collaboration! Ultralytics YOLO wouldn't be the SOTA framework it is without contributions from developers like you. Please see our Contributing Guide to get started. We also welcome your feedback—share your experience by completing our Survey. A huge Thank You 🙏 to everyone who contributes!

Ultralytics open-source contributors

We look forward to your contributions to help make the Ultralytics ecosystem even better!

📜 License

Ultralytics offers two licensing options to suit different needs:

  • AGPL-3.0 License: This OSI-approved open-source license is perfect for students, researchers, and enthusiasts. It encourages open collaboration and knowledge sharing. See the LICENSE file for full details.
  • Ultralytics Enterprise License: Designed for commercial use, this license allows for the seamless integration of Ultralytics software and AI models into commercial products and services, bypassing the open-source requirements of AGPL-3.0. If your use case involves commercial deployment, please contact us via Ultralytics Licensing.

📞 Contact

For bug reports and feature requests related to Ultralytics software, please visit GitHub Issues. For questions, discussions, and community support, join our active communities on Discord, Reddit, and the Ultralytics Community Forums. We're here to help with all things Ultralytics!


Ultralytics GitHub space Ultralytics LinkedIn space Ultralytics Twitter space Ultralytics YouTube space Ultralytics TikTok space Ultralytics BiliBili space Ultralytics Discord

Owner

  • Name: Ultralytics
  • Login: ultralytics
  • Kind: organization
  • Email: hello@ultralytics.com
  • Location: United States of America

Simpler. Smarter. Further.

Citation (CITATION.cff)

# This CITATION.cff file was generated with https://bit.ly/cffinit

cff-version: 1.2.0
title: Ultralytics YOLO
message: >-
  If you use this software, please cite it using the
  metadata from this file.
type: software
authors:
  - given-names: Glenn
    family-names: Jocher
    affiliation: Ultralytics
    orcid: "https://orcid.org/0000-0001-5950-6979"
  - family-names: Qiu
    given-names: Jing
    affiliation: Ultralytics
    orcid: "https://orcid.org/0000-0003-3783-7069"
  - given-names: Ayush
    family-names: Chaurasia
    affiliation: Ultralytics
    orcid: "https://orcid.org/0000-0002-7603-6750"
repository-code: "https://github.com/ultralytics/ultralytics"
url: "https://ultralytics.com"
license: AGPL-3.0
version: 8.0.0
date-released: "2023-01-10"

Committers

Last synced: 7 months ago

All Time
  • Total Commits: 2,679
  • Total Committers: 269
  • Avg Commits per committer: 9.959
  • Development Distribution Score (DDS): 0.557
Past Year
  • Commits: 1,477
  • Committers: 151
  • Avg Commits per committer: 9.781
  • Development Distribution Score (DDS): 0.673
Top Committers
Name Email Commits
Glenn Jocher g****r@u****m 1,188
Muhammad Rizwan Munawar m****3@g****m 316
Laughing 6****q 211
Mohammed Yasin 3****G 188
Lakshantha Dissanayake l****d@y****m 96
Ayush Chaurasia a****a@g****m 83
Burhan 6****Q 48
Francesco Mattioli F****l@g****m 46
Abirami Vina a****a@g****m 35
Jan Knobloch 1****e 28
Ultralytics Assistant 1****t 23
dependabot[bot] 4****] 23
Sergiu Waxmann 4****n 18
Kayzwer 6****r 13
Paula Derrenger 1****r 13
Ivor Zhu 1****1 5
Iaroslav Omelianenko y****l@y****m 5
Kalen Michael k****e@g****m 5
Adrian Boguszewski a****i@i****m 5
Skillnoob 7****b 5
fatih c. akyon 3****n 5
Ivan Shcheklein s****n@g****m 4
Jamjamjon 5****n 4
MatthewNoyce 1****e 4
inisis 4****s 4
Colin Wong c****h@g****m 4
Onuralp SEZER t****r@g****m 4
Awsome 1****7@q****m 4
triple Mu g****u@1****m 4
Quet Almahdi Morris m****l@g****m 3
and 239 more...

Issues and Pull Requests

Last synced: 4 months ago

All Time
  • Total issues: 9,719
  • Total pull requests: 4,893
  • Average time to close issues: about 1 month
  • Average time to close pull requests: 25 days
  • Total issue authors: 5,855
  • Total pull request authors: 760
  • Average comments per issue: 5.0
  • Average comments per pull request: 3.82
  • Merged pull requests: 2,687
  • Bot issues: 4
  • Bot pull requests: 72
Past Year
  • Issues: 2,971
  • Pull requests: 2,641
  • Average time to close issues: about 1 month
  • Average time to close pull requests: 5 days
  • Issue authors: 2,016
  • Pull request authors: 321
  • Average comments per issue: 3.59
  • Average comments per pull request: 3.63
  • Merged pull requests: 1,497
  • Bot issues: 1
  • Bot pull requests: 37
Top Authors
Issue Authors
  • monkeycc (58)
  • Burhan-Q (45)
  • guerreromcleod (44)
  • tjasmin111 (37)
  • glenn-jocher (29)
  • Rasantis (28)
  • sarpx (28)
  • Ellohiye (27)
  • pornpra (22)
  • Sparklexa (18)
  • Petros626 (18)
  • anumhashmi (18)
  • cainiao123s (17)
  • darouwan (16)
  • MasIgor (16)
Pull Request Authors
  • glenn-jocher (1,202)
  • RizwanMunawar (670)
  • Y-T-G (355)
  • Laughing-q (289)
  • lakshanthad (179)
  • ambitious-octopus (130)
  • Burhan-Q (130)
  • dependabot[bot] (69)
  • Kayzwer (62)
  • abirami-vina (52)
  • jk4e (37)
  • zanaries (32)
  • AyushExel (27)
  • developer0hye (27)
  • UltralyticsAssistant (25)
Top Labels
Issue Labels
question (6,900) Stale (4,975) bug (1,831) detect (837) enhancement (636) non-reproducible (379) fixed (369) exports (346) segment (255) invalid (211) OBB (132) pose (126) dependencies (110) classify (92) embedded (78) track (71) help wanted (68) TODO (53) devops (52) documentation (49) external (42) research (38) solutions (31) duplicate (20) HUB (14) Alert (12) wontfix (5) python (4) enterprise (4) Notebook (4)
Pull Request Labels
enhancement (1,762) documentation (1,027) devops (405) dependencies (370) exports (359) bug (324) detect (321) TODO (251) Stale (227) solutions (148) segment (128) embedded (124) python (108) question (97) fixed (87) track (82) OBB (68) classify (68) HUB (67) pose (61) invalid (46) Notebook (15) non-reproducible (11) research (10) Explorer (8) popular (7) external (7) duplicate (6) App (5) wontfix (3)

Packages

  • Total packages: 28
  • Total downloads:
    • pypi 6,071,572 last-month
  • Total docker downloads: 43,981
  • Total dependent packages: 177
    (may contain duplicates)
  • Total dependent repositories: 1,178
    (may contain duplicates)
  • Total versions: 1,326
  • Total maintainers: 19
pypi.org: ultralytics

Ultralytics YOLO 🚀 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.

  • Versions: 583
  • Dependent Packages: 177
  • Dependent Repositories: 1,176
  • Downloads: 6,067,369 Last month
  • Docker Downloads: 43,981
Rankings
Stargazers count: 0.1%
Downloads: 0.2%
Forks count: 0.2%
Dependent repos count: 0.3%
Average: 0.5%
Dependent packages count: 0.7%
Docker downloads count: 1.5%
Maintainers (1)
Last synced: 12 months ago
pypi.org: ultralytics-dev

Ultralytics YOLOv8 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.

  • Versions: 47
  • Dependent Packages: 0
  • Dependent Repositories: 1
  • Downloads: 186 Last month
Rankings
Stargazers count: 0.1%
Forks count: 0.2%
Average: 9.0%
Dependent packages count: 10.1%
Downloads: 12.9%
Dependent repos count: 21.5%
Maintainers (1)
Funding
  • https://ultralytics.com
Last synced: 4 months ago
pypi.org: yolotest

Ultralytics YOLOv8

  • Versions: 2
  • Dependent Packages: 0
  • Dependent Repositories: 0
  • Downloads: 13 Last month
Rankings
Stargazers count: 0.4%
Forks count: 1.3%
Dependent packages count: 7.0%
Average: 9.8%
Dependent repos count: 30.5%
Maintainers (1)
Funding
  • https://ultralytics.com
Last synced: 4 months ago
proxy.golang.org: github.com/ultralytics/ultralytics
  • Versions: 554
  • Dependent Packages: 0
  • Dependent Repositories: 0
Rankings
Dependent packages count: 9.3%
Average: 9.9%
Dependent repos count: 10.5%
Last synced: 4 months ago
pypi.org: syml-ultralytics

Ultralytics YOLO 🚀 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.

  • Versions: 21
  • Dependent Packages: 0
  • Dependent Repositories: 1
  • Downloads: 81 Last month
Rankings
Stargazers count: 0.1%
Forks count: 0.2%
Average: 10.0%
Dependent packages count: 10.1%
Downloads: 17.8%
Dependent repos count: 21.5%
Maintainers (2)
Last synced: 4 months ago
pypi.org: imagedetect

Ultralytics YOLOv8

  • Versions: 4
  • Dependent Packages: 0
  • Dependent Repositories: 0
  • Downloads: 25 Last month
Rankings
Stargazers count: 0.4%
Forks count: 1.3%
Dependent packages count: 6.6%
Average: 10.2%
Downloads: 12.3%
Dependent repos count: 30.6%
Maintainers (1)
Funding
  • https://ultralytics.com
Last synced: 4 months ago
pypi.org: roar-yolo

Ultralytics YOLOv8

  • Versions: 2
  • Dependent Packages: 0
  • Dependent Repositories: 0
  • Downloads: 14 Last month
Rankings
Stargazers count: 0.4%
Forks count: 1.3%
Dependent packages count: 7.0%
Average: 10.4%
Downloads: 12.8%
Dependent repos count: 30.5%
Maintainers (1)
Funding
  • https://ultralytics.com
Last synced: 4 months ago
pypi.org: ultralytics-dist-yolo

Ultralytics YOLOv8 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.

  • Versions: 1
  • Dependent Packages: 0
  • Dependent Repositories: 0
  • Downloads: 44 Last month
Rankings
Stargazers count: 0.2%
Forks count: 0.4%
Dependent packages count: 7.2%
Average: 12.3%
Dependent repos count: 41.3%
Maintainers (1)
Funding
  • https://ultralytics.com
Last synced: 4 months ago
pypi.org: ultralytics-custom

Ultralytics YOLOv8 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.

  • Versions: 2
  • Dependent Packages: 0
  • Dependent Repositories: 0
  • Downloads: 9 Last month
Rankings
Stargazers count: 0.3%
Forks count: 1.0%
Dependent packages count: 7.3%
Average: 12.5%
Dependent repos count: 41.3%
Maintainers (1)
Funding
  • https://ultralytics.com
Last synced: 4 months ago
pypi.org: ppmmvehicle

Ultralytics YOLOv8 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.

  • Versions: 2
  • Dependent Packages: 0
  • Dependent Repositories: 0
  • Downloads: 15 Last month
Rankings
Stargazers count: 0.2%
Forks count: 0.3%
Dependent packages count: 7.2%
Average: 13.2%
Downloads: 16.9%
Dependent repos count: 41.3%
Maintainers (1)
Funding
  • https://ultralytics.com
Last synced: about 1 year ago
pypi.org: rknn-yolov8

自用rknn yolov8 版本 8.2.82 只修复了 weights_only=False 问题

  • Versions: 1
  • Dependent Packages: 0
  • Dependent Repositories: 0
Rankings
Forks count: 0.1%
Stargazers count: 0.1%
Dependent packages count: 8.7%
Average: 14.5%
Dependent repos count: 49.0%
Maintainers (1)
Funding
  • https://ultralytics.com
Last synced: 4 months ago
pypi.org: zmkj-rknn-yolov8

自用rknn yolov8 版本 只修复了 weights_only=False 问题 来源https://github.com/airockchip/ultralytics_yolov8 8.0.151 v1.6分支

  • Versions: 5
  • Dependent Packages: 0
  • Dependent Repositories: 0
  • Downloads: 647 Last month
Rankings
Forks count: 0.1%
Stargazers count: 0.1%
Dependent packages count: 8.7%
Average: 14.5%
Dependent repos count: 49.0%
Maintainers (1)
Funding
  • https://ultralytics.com
Last synced: 4 months ago
spack.io: py-ultralytics

Ultralytics YOLOv8, developed by Ultralytics, is a cutting-edge, state- of-the-art (SOTA) model that builds upon the success of previous YOLO versions and introduces new features and improvements to further boost performance and flexibility. YOLOv8 is designed to be fast, accurate, and easy to use, making it an excellent choice for a wide range of object detection, image segmentation and image classification tasks.

  • Versions: 1
  • Dependent Packages: 0
  • Dependent Repositories: 0
Rankings
Dependent repos count: 0.0%
Stargazers count: 2.2%
Forks count: 3.2%
Average: 15.7%
Dependent packages count: 57.3%
Maintainers (1)
Last synced: 4 months ago
pypi.org: ultralytics-copy
  • Versions: 1
  • Dependent Packages: 0
  • Dependent Repositories: 0
  • Downloads: 33 Last month
Rankings
Stargazers count: 0.2%
Forks count: 0.3%
Dependent packages count: 7.5%
Average: 16.3%
Dependent repos count: 56.9%
Maintainers (1)
Funding
  • https://ultralytics.com
Last synced: 4 months ago
pypi.org: dgenerate-ultralytics-headless

Automatically built Ultralytics package with python-opencv-headless dependency instead of python-opencv

  • Versions: 55
  • Dependent Packages: 0
  • Dependent Repositories: 0
  • Downloads: 2,494 Last month
Rankings
Dependent packages count: 9.1%
Average: 30.3%
Dependent repos count: 51.5%
Maintainers (1)
Last synced: 4 months ago
pypi.org: ultralytics-headless

Ultralytics YOLO 🚀 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.

  • Versions: 1
  • Dependent Packages: 0
  • Dependent Repositories: 0
Rankings
Dependent packages count: 10.0%
Average: 33.2%
Dependent repos count: 56.4%
Maintainers (1)
Last synced: about 1 year ago
pypi.org: ultralyticsheadless

Ultralytics YOLO 🚀 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.

  • Versions: 1
  • Dependent Packages: 0
  • Dependent Repositories: 0
  • Downloads: 68 Last month
Rankings
Dependent packages count: 10.0%
Average: 33.2%
Dependent repos count: 56.4%
Maintainers (1)
Last synced: 4 months ago
pypi.org: ultralytics-v11

Ultralytics YOLO for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.

  • Versions: 1
  • Dependent Packages: 0
  • Dependent Repositories: 0
  • Downloads: 116 Last month
Rankings
Dependent packages count: 10.2%
Average: 33.9%
Dependent repos count: 57.5%
Maintainers (1)
Last synced: 4 months ago
pypi.org: ultralytics-export-to-rknn

Ultralytics YOLOv8 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.

  • Versions: 3
  • Dependent Packages: 0
  • Dependent Repositories: 0
  • Downloads: 28 Last month
Rankings
Dependent packages count: 10.4%
Average: 34.4%
Dependent repos count: 58.4%
Maintainers (1)
Funding
  • https://ultralytics.com
Last synced: 4 months ago
pypi.org: ultralytics-rknn-export

Ultralytics YOLOv8 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.

  • Versions: 1
  • Dependent Packages: 0
  • Dependent Repositories: 0
  • Downloads: 137 Last month
Rankings
Dependent packages count: 10.4%
Average: 34.4%
Dependent repos count: 58.4%
Maintainers (1)
Funding
  • https://ultralytics.com
Last synced: about 1 year ago
pypi.org: ultralytics-yolov10-rknn

Ultralytics YOLOv8 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.

  • Versions: 1
  • Dependent Packages: 0
  • Dependent Repositories: 0
  • Downloads: 27 Last month
Rankings
Dependent packages count: 10.4%
Average: 34.4%
Dependent repos count: 58.5%
Maintainers (1)
Funding
  • https://ultralytics.com
Last synced: 4 months ago
pypi.org: ymsyolo10

Ultralytics YOLOv8 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.

  • Versions: 4
  • Dependent Packages: 0
  • Dependent Repositories: 0
  • Downloads: 20 Last month
Rankings
Dependent packages count: 10.4%
Average: 34.5%
Dependent repos count: 58.6%
Maintainers (1)
Funding
  • https://ultralytics.com
Last synced: 4 months ago
pypi.org: ultralytics-rknn

Ultralytics YOLOv8 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.

  • Versions: 18
  • Dependent Packages: 0
  • Dependent Repositories: 0
  • Downloads: 79 Last month
Rankings
Dependent packages count: 9.6%
Average: 36.3%
Dependent repos count: 63.1%
Maintainers (1)
Funding
  • https://ultralytics.com
Last synced: 4 months ago
pypi.org: yolov8-rknn

Ultralytics YOLOv8 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.

  • Versions: 1
  • Dependent Packages: 0
  • Dependent Repositories: 0
  • Downloads: 27 Last month
Rankings
Dependent packages count: 9.6%
Average: 36.3%
Dependent repos count: 63.1%
Maintainers (1)
Funding
  • https://ultralytics.com
Last synced: 4 months ago
pypi.org: yolov8-pose-triton

Ultralytics YOLOv8 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.

  • Versions: 2
  • Dependent Packages: 0
  • Dependent Repositories: 0
  • Downloads: 74 Last month
Rankings
Dependent packages count: 10.0%
Forks count: 29.8%
Average: 36.5%
Stargazers count: 38.8%
Dependent repos count: 67.4%
Maintainers (1)
Funding
  • https://ultralytics.com
Last synced: 4 months ago
pypi.org: simplelatexocr

A simple LaTeX OCR package

  • Versions: 1
  • Dependent Packages: 0
  • Dependent Repositories: 0
Rankings
Dependent packages count: 9.7%
Average: 37.0%
Dependent repos count: 64.2%
Maintainers (1)
Last synced: about 1 year ago
pypi.org: ultralyticsutils

My short description for my project.

  • Versions: 6
  • Dependent Packages: 0
  • Dependent Repositories: 0
  • Downloads: 47 Last month
Rankings
Dependent packages count: 9.9%
Average: 37.8%
Dependent repos count: 65.7%
Maintainers (1)
Last synced: 4 months ago
pypi.org: xn-ultralytics

This is a public fork of Ultralytics YOLOv8 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification. Free for anyone to use, for non-commercial purposes.

  • Versions: 5
  • Dependent Packages: 0
  • Dependent Repositories: 0
  • Downloads: 19 Last month
Rankings
Dependent packages count: 7.4%
Average: 38.1%
Dependent repos count: 68.8%
Maintainers (1)
Funding
  • https://ultralytics.com
Last synced: 4 months ago

Dependencies

.github/workflows/ci.yaml actions
  • actions/cache v3 composite
  • actions/checkout v3 composite
  • actions/setup-python v4 composite
.github/workflows/cla.yml actions
  • contributor-assistant/github-action v2.2.0 composite
.github/workflows/docker.yaml actions
  • actions/checkout v3 composite
  • docker/build-push-action v3 composite
  • docker/login-action v2 composite
  • docker/setup-buildx-action v2 composite
  • docker/setup-qemu-action v2 composite
docker/Dockerfile docker
  • nvcr.io/nvidia/pytorch 22.12-py3 build
requirements.txt pypi
  • GitPython >=3.1.24
  • Pillow >=7.1.2
  • PyYAML >=5.3.1
  • hydra-core >=1.2.0
  • ipython *
  • matplotlib >=3.2.2
  • numpy >=1.18.5
  • opencv-python >=4.1.1
  • pandas >=1.1.4
  • psutil *
  • requests >=2.23.0
  • scipy >=1.4.1
  • seaborn >=0.11.0
  • tensorboard >=2.4.1
  • thop >=0.1.1
  • torch >=1.7.0
  • torchvision >=0.8.1
  • tqdm >=4.64.0
.github/workflows/codeql.yaml actions
  • actions/checkout v4 composite
  • github/codeql-action/analyze v2 composite
  • github/codeql-action/init v2 composite
.github/workflows/greetings.yml actions
  • actions/first-interaction v1 composite
.github/workflows/links.yml actions
  • actions/checkout v4 composite
  • nick-invision/retry v2 composite
.github/workflows/publish.yml actions
  • actions/checkout v4 composite
  • actions/setup-python v4 composite
  • slackapi/slack-github-action v1.24.0 composite
.github/workflows/stale.yml actions
  • actions/stale v8 composite
setup.py pypi