dynamite

Bayesian Inference of Complex Panel Data

https://github.com/ropensci/dynamite

Science Score: 49.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
    Found 4 DOI reference(s) in README
  • Academic publication links
    Links to: arxiv.org
  • Academic email domains
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (21.2%) to scientific vocabulary

Keywords

bayesian-inference panel-data r r-package rstats stan statistical-models
Last synced: 6 months ago · JSON representation

Repository

Bayesian Inference of Complex Panel Data

Basic Info
Statistics
  • Stars: 34
  • Watchers: 4
  • Forks: 1
  • Open Issues: 5
  • Releases: 4
Topics
bayesian-inference panel-data r r-package rstats stan statistical-models
Created almost 4 years ago · Last pushed 8 months ago
Metadata Files
Readme Changelog Contributing License Codemeta

README.Rmd

---
output: github_document
---



```{r, include = FALSE}
knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>",
  fig.path = "man/figures/README-",
  fig.align = "center",
  fig.width = 9, 
  fig.height = 6
)
```

```{r srr-tags, eval = FALSE, echo = FALSE}
#' @srrstats {G1.1,  G1.2}
```

# dynamite: Bayesian Modeling and Causal Inference for Multivariate Longitudinal Data 


[![Project Status: Active – The project has reached a stable, usable state and is being actively developed.](https://www.repostatus.org/badges/latest/active.svg)](https://www.repostatus.org/#active)
[![R-CMD-check](https://github.com/ropensci/dynamite/workflows/R-CMD-check/badge.svg)](https://github.com/ropensci/dynamite/actions)
[![Codecov test coverage](https://codecov.io/gh/ropensci/dynamite/branch/main/graph/badge.svg)](https://app.codecov.io/gh/ropensci/dynamite?branch=main)
[![Status at rOpenSci Software Peer Review](https://badges.ropensci.org/554_status.svg)](https://github.com/ropensci/software-review/issues/554)
[![dynamite status badge](https://ropensci.r-universe.dev/badges/dynamite)](https://ropensci.r-universe.dev)
[![dynamite CRAN badge](https://www.r-pkg.org/badges/version/dynamite)](https://cran.r-project.org/package=dynamite)


The `dynamite` [R](https://www.r-project.org/) package provides an easy-to-use interface for Bayesian inference of complex panel (time series) data comprising of multiple measurements per multiple individuals measured in time via dynamic multivariate panel models (DMPM). The main features distinguishing the package and the underlying methodology from many other approaches are:

* Support for regular time-invariant effects, group-level random effects, and time-varying effects modeled via Bayesian P-splines.
* Joint modeling of multiple measurements per individual (multiple channels) based directly on the assumed data-generating process. Individual channels can be univariate or multivariate.
* Support for various distributions: Currently Gaussian, Multivariate Gaussian, Student t, Categorical, Ordered, Multinomial, Poisson, Bernoulli, Binomial, Negative Binomial, Gamma, Exponential, and Beta distributions are available, and these can be combined arbitrarily in multichannel models.
* Allows evaluating realistic long-term counterfactual predictions that take into account the dynamic structure of the model by efficient posterior predictive distribution simulation.
* Transparent quantification of parameter and predictive uncertainty due to a fully Bayesian approach.
* Various visualization methods including a method for drawing and producing a TikZ code of the directed acyclic graph (DAG) of the model structure.
* User-friendly and efficient R interface with state-of-the-art estimation via Stan. Both `rstan` and `cmdstanr` backends are supported, with both parallel chains and within-chain parallelization.

The `dynamite` package is developed with the support of the Research Council of Finland grant 331817 ([PREDLIFE](https://sites.utu.fi/predlife/en/)). For further information on DMPMs and the `dynamite` package, see the related papers:

* Helske J. and Tikka S. (2024). Estimating Causal Effects from Panel Data with Dynamic Multivariate Panel Models. *Advances in Life Course Research*, 60, 100617. ([Journal version](https://doi.org/10.1016/j.alcr.2024.100617), [SocArXiv](https://doi.org/10.31235/osf.io/mdwu5) preprint)
* Tikka S. and Helske J. (2024). `dynamite`: An R Package for Dynamic Multivariate Panel Models. ([arXiv](https://arxiv.org/abs/2302.01607) preprint)

## Installation

You can install the most recent stable version of `dynamite` from [CRAN](https://cran.r-project.org/package=dynamite) or the development version from [R-universe](https://r-universe.dev/search) by running one the following lines:

```{r, eval = FALSE}
install.packages("dynamite")
install.packages("dynamite", repos = "https://ropensci.r-universe.dev")
```

## Example

A single-channel model with time-invariant effect of `z`, time-varying effect of `x`, lagged value of the response variable `y` and a group-specific random intercepts:

```{r, echo = FALSE}
library("dynamite")
ggplot2::theme_set(ggplot2::theme_bw())
```

```{r, eval = FALSE}
set.seed(1)
library("dynamite")
gaussian_example_fit <- dynamite(
  obs(y ~ -1 + z + varying(~ x + lag(y)) + random(~1), family = "gaussian") +
    splines(df = 20),
  data = gaussian_example, time = "time", group = "id",
  iter = 2000, chains = 2, cores = 2, refresh = 0
)
```

```{r, echo = FALSE}
set.seed(1)
library("dynamite")
gaussian_example_fit <- update(
  gaussian_example_fit,
  iter = 2000, warmup = 1000, thin = 1,
  chains = 2, cores = 2, refresh = 0
)
```

Summary of the model:
```{r}
print(gaussian_example_fit)
```

Posterior estimates of time-varying effects:
```{r, fig.width = 9, fig.height = 4}
plot(gaussian_example_fit, types = c("alpha", "delta"), scales = "free")
```

And group-specific intercepts (for first 10 groups):
```{r, fig.width = 9, fig.height = 4}
plot(gaussian_example_fit, types = "nu", groups = 1:10)
```

Traceplots and density plots for time-invariant parameters:
```{r, fig.width = 9, fig.height = 4}
plot(gaussian_example_fit, plot_type = "trace", types = "beta")
```

Posterior predictive samples for the first 4 groups (using the samples based on the posterior distribution of the model parameters and observed data on the first time point):
```{r, warning=FALSE, fig.width = 9, fig.height = 4}
library("ggplot2")
pred <- predict(gaussian_example_fit, n_draws = 100)
pred |>
  dplyr::filter(id < 5) |>
  ggplot(aes(time, y_new, group = .draw)) +
  geom_line(alpha = 0.25) +
  # observed values
  geom_line(aes(y = y), colour = "tomato") +
  facet_wrap(~id) +
  theme_bw()
```

Visualizing the model structure as a DAG (a snapshot at time `t`):
```{r, fig.width = 4, fig.height = 4}
plot(gaussian_example_fit, plot_type = "dag", show_covariates = TRUE)
```

For more examples, see the package vignettes and the [blog post about dynamite](https://ropensci.org/blog/2023/01/31/dynamite-r-package/).

## Related packages

- The `dynamite` package uses Stan via [`rstan`](https://CRAN.R-project.org/package=rstan) and [`cmdstanr`](https://mc-stan.org/cmdstanr/) (see also https://mc-stan.org), which is a probabilistic programming language for general Bayesian modelling.
- The [`brms`](https://CRAN.R-project.org/package=brms) package also uses Stan, and can be used to fit various complex multilevel models.
- Regression modeling with time-varying coefficients based on kernel smoothing and least squares estimation is available in package [`tvReg`](https://CRAN.R-project.org/package=tvReg). The [`tvem`](https://CRAN.R-project.org/package=tvem) package provides similar functionality for gaussian, binomial and poisson responses with [`mgcv`](https://CRAN.R-project.org/package=mgcv) backend.
- [`plm`](https://CRAN.R-project.org/package=plm) contains various methods to estimate linear models for panel data, e.g., fixed effect models.
- [`lavaan`](https://CRAN.R-project.org/package=lavaan) provides tools for structural equation modeling, and as such can be used to model various panel data models as well.

## Contributing

Contributions are very welcome, see [CONTRIBUTING.md](https://github.com/ropensci/dynamite/blob/main/.github/CONTRIBUTING.md) for general guidelines.

Owner

  • Name: rOpenSci
  • Login: ropensci
  • Kind: organization
  • Email: info@ropensci.org
  • Location: Berkeley, CA

CodeMeta (codemeta.json)

{
  "@context": "https://doi.org/10.5063/schema/codemeta-2.0",
  "@type": "SoftwareSourceCode",
  "identifier": "dynamite",
  "description": "Easy-to-use and efficient interface for Bayesian inference of complex panel (time series) data using dynamic multivariate panel models by Helske and Tikka (2024) <doi:10.1016/j.alcr.2024.100617>. The package supports joint modeling of multiple measurements per individual, time-varying and time-invariant effects, and a wide range of discrete and continuous distributions. Estimation of these dynamic multivariate panel models is carried out via 'Stan'. For an in-depth tutorial of the package, see (Tikka and Helske, 2024) <doi:10.48550/arXiv.2302.01607>.",
  "name": "dynamite: Bayesian Modeling and Causal Inference for Multivariate\n    Longitudinal Data",
  "relatedLink": [
    "https://docs.ropensci.org/dynamite/",
    "https://CRAN.R-project.org/package=dynamite"
  ],
  "codeRepository": "https://github.com/ropensci/dynamite/",
  "issueTracker": "https://github.com/ropensci/dynamite/issues/",
  "license": "https://spdx.org/licenses/GPL-3.0",
  "version": "1.5.5",
  "programmingLanguage": {
    "@type": "ComputerLanguage",
    "name": "R",
    "url": "https://r-project.org"
  },
  "runtimePlatform": "R version 4.4.2 (2024-10-31 ucrt)",
  "provider": {
    "@id": "https://cran.r-project.org",
    "@type": "Organization",
    "name": "Comprehensive R Archive Network (CRAN)",
    "url": "https://cran.r-project.org"
  },
  "author": [
    {
      "@type": "Person",
      "givenName": "Santtu",
      "familyName": "Tikka",
      "email": "santtuth@gmail.com",
      "@id": "https://orcid.org/0000-0003-4039-4342"
    },
    {
      "@type": "Person",
      "givenName": "Jouni",
      "familyName": "Helske",
      "email": "jouni.helske@iki.fi",
      "@id": "https://orcid.org/0000-0001-7130-793X"
    }
  ],
  "maintainer": [
    {
      "@type": "Person",
      "givenName": "Santtu",
      "familyName": "Tikka",
      "email": "santtuth@gmail.com",
      "@id": "https://orcid.org/0000-0003-4039-4342"
    }
  ],
  "softwareSuggestions": [
    {
      "@type": "SoftwareApplication",
      "identifier": "cmdstanr",
      "name": "cmdstanr"
    },
    {
      "@type": "SoftwareApplication",
      "identifier": "covr",
      "name": "covr",
      "provider": {
        "@id": "https://cran.r-project.org",
        "@type": "Organization",
        "name": "Comprehensive R Archive Network (CRAN)",
        "url": "https://cran.r-project.org"
      },
      "sameAs": "https://CRAN.R-project.org/package=covr"
    },
    {
      "@type": "SoftwareApplication",
      "identifier": "dplyr",
      "name": "dplyr",
      "provider": {
        "@id": "https://cran.r-project.org",
        "@type": "Organization",
        "name": "Comprehensive R Archive Network (CRAN)",
        "url": "https://cran.r-project.org"
      },
      "sameAs": "https://CRAN.R-project.org/package=dplyr"
    },
    {
      "@type": "SoftwareApplication",
      "identifier": "knitr",
      "name": "knitr",
      "provider": {
        "@id": "https://cran.r-project.org",
        "@type": "Organization",
        "name": "Comprehensive R Archive Network (CRAN)",
        "url": "https://cran.r-project.org"
      },
      "sameAs": "https://CRAN.R-project.org/package=knitr"
    },
    {
      "@type": "SoftwareApplication",
      "identifier": "mice",
      "name": "mice",
      "provider": {
        "@id": "https://cran.r-project.org",
        "@type": "Organization",
        "name": "Comprehensive R Archive Network (CRAN)",
        "url": "https://cran.r-project.org"
      },
      "sameAs": "https://CRAN.R-project.org/package=mice"
    },
    {
      "@type": "SoftwareApplication",
      "identifier": "mockthat",
      "name": "mockthat",
      "provider": {
        "@id": "https://cran.r-project.org",
        "@type": "Organization",
        "name": "Comprehensive R Archive Network (CRAN)",
        "url": "https://cran.r-project.org"
      },
      "sameAs": "https://CRAN.R-project.org/package=mockthat"
    },
    {
      "@type": "SoftwareApplication",
      "identifier": "quarto",
      "name": "quarto",
      "provider": {
        "@id": "https://cran.r-project.org",
        "@type": "Organization",
        "name": "Comprehensive R Archive Network (CRAN)",
        "url": "https://cran.r-project.org"
      },
      "sameAs": "https://CRAN.R-project.org/package=quarto"
    },
    {
      "@type": "SoftwareApplication",
      "identifier": "testthat",
      "name": "testthat",
      "version": ">= 3.0.0",
      "provider": {
        "@id": "https://cran.r-project.org",
        "@type": "Organization",
        "name": "Comprehensive R Archive Network (CRAN)",
        "url": "https://cran.r-project.org"
      },
      "sameAs": "https://CRAN.R-project.org/package=testthat"
    },
    {
      "@type": "SoftwareApplication",
      "identifier": "tidyr",
      "name": "tidyr",
      "provider": {
        "@id": "https://cran.r-project.org",
        "@type": "Organization",
        "name": "Comprehensive R Archive Network (CRAN)",
        "url": "https://cran.r-project.org"
      },
      "sameAs": "https://CRAN.R-project.org/package=tidyr"
    }
  ],
  "softwareRequirements": {
    "1": {
      "@type": "SoftwareApplication",
      "identifier": "R",
      "name": "R",
      "version": ">= 3.6.0"
    },
    "2": {
      "@type": "SoftwareApplication",
      "identifier": "checkmate",
      "name": "checkmate",
      "provider": {
        "@id": "https://cran.r-project.org",
        "@type": "Organization",
        "name": "Comprehensive R Archive Network (CRAN)",
        "url": "https://cran.r-project.org"
      },
      "sameAs": "https://CRAN.R-project.org/package=checkmate"
    },
    "3": {
      "@type": "SoftwareApplication",
      "identifier": "cli",
      "name": "cli",
      "provider": {
        "@id": "https://cran.r-project.org",
        "@type": "Organization",
        "name": "Comprehensive R Archive Network (CRAN)",
        "url": "https://cran.r-project.org"
      },
      "sameAs": "https://CRAN.R-project.org/package=cli"
    },
    "4": {
      "@type": "SoftwareApplication",
      "identifier": "data.table",
      "name": "data.table",
      "version": ">= 1.15.0",
      "provider": {
        "@id": "https://cran.r-project.org",
        "@type": "Organization",
        "name": "Comprehensive R Archive Network (CRAN)",
        "url": "https://cran.r-project.org"
      },
      "sameAs": "https://CRAN.R-project.org/package=data.table"
    },
    "5": {
      "@type": "SoftwareApplication",
      "identifier": "ggforce",
      "name": "ggforce",
      "provider": {
        "@id": "https://cran.r-project.org",
        "@type": "Organization",
        "name": "Comprehensive R Archive Network (CRAN)",
        "url": "https://cran.r-project.org"
      },
      "sameAs": "https://CRAN.R-project.org/package=ggforce"
    },
    "6": {
      "@type": "SoftwareApplication",
      "identifier": "glue",
      "name": "glue",
      "provider": {
        "@id": "https://cran.r-project.org",
        "@type": "Organization",
        "name": "Comprehensive R Archive Network (CRAN)",
        "url": "https://cran.r-project.org"
      },
      "sameAs": "https://CRAN.R-project.org/package=glue"
    },
    "7": {
      "@type": "SoftwareApplication",
      "identifier": "ggplot2",
      "name": "ggplot2",
      "provider": {
        "@id": "https://cran.r-project.org",
        "@type": "Organization",
        "name": "Comprehensive R Archive Network (CRAN)",
        "url": "https://cran.r-project.org"
      },
      "sameAs": "https://CRAN.R-project.org/package=ggplot2"
    },
    "8": {
      "@type": "SoftwareApplication",
      "identifier": "loo",
      "name": "loo",
      "provider": {
        "@id": "https://cran.r-project.org",
        "@type": "Organization",
        "name": "Comprehensive R Archive Network (CRAN)",
        "url": "https://cran.r-project.org"
      },
      "sameAs": "https://CRAN.R-project.org/package=loo"
    },
    "9": {
      "@type": "SoftwareApplication",
      "identifier": "patchwork",
      "name": "patchwork",
      "provider": {
        "@id": "https://cran.r-project.org",
        "@type": "Organization",
        "name": "Comprehensive R Archive Network (CRAN)",
        "url": "https://cran.r-project.org"
      },
      "sameAs": "https://CRAN.R-project.org/package=patchwork"
    },
    "10": {
      "@type": "SoftwareApplication",
      "identifier": "posterior",
      "name": "posterior",
      "provider": {
        "@id": "https://cran.r-project.org",
        "@type": "Organization",
        "name": "Comprehensive R Archive Network (CRAN)",
        "url": "https://cran.r-project.org"
      },
      "sameAs": "https://CRAN.R-project.org/package=posterior"
    },
    "11": {
      "@type": "SoftwareApplication",
      "identifier": "rlang",
      "name": "rlang",
      "provider": {
        "@id": "https://cran.r-project.org",
        "@type": "Organization",
        "name": "Comprehensive R Archive Network (CRAN)",
        "url": "https://cran.r-project.org"
      },
      "sameAs": "https://CRAN.R-project.org/package=rlang"
    },
    "12": {
      "@type": "SoftwareApplication",
      "identifier": "rstan",
      "name": "rstan",
      "provider": {
        "@id": "https://cran.r-project.org",
        "@type": "Organization",
        "name": "Comprehensive R Archive Network (CRAN)",
        "url": "https://cran.r-project.org"
      },
      "sameAs": "https://CRAN.R-project.org/package=rstan"
    },
    "13": {
      "@type": "SoftwareApplication",
      "identifier": "stats",
      "name": "stats"
    },
    "14": {
      "@type": "SoftwareApplication",
      "identifier": "tibble",
      "name": "tibble",
      "version": ">= 2.0.0",
      "provider": {
        "@id": "https://cran.r-project.org",
        "@type": "Organization",
        "name": "Comprehensive R Archive Network (CRAN)",
        "url": "https://cran.r-project.org"
      },
      "sameAs": "https://CRAN.R-project.org/package=tibble"
    },
    "15": {
      "@type": "SoftwareApplication",
      "identifier": "utils",
      "name": "utils"
    },
    "SystemRequirements": null
  },
  "fileSize": "NAKB",
  "citation": [
    {
      "@type": "CreativeWork",
      "datePublished": "2024",
      "author": [
        {
          "@type": "Person",
          "givenName": "Santtu",
          "familyName": "Tikka"
        },
        {
          "@type": "Person",
          "givenName": "Jouni",
          "familyName": "Helske"
        }
      ],
      "name": "dynamite: An R Package for Dynamic Multivariate Panel Models",
      "identifier": "10.48550/arXiv.2302.01607",
      "url": "https://arxiv.org/abs/2302.01607",
      "@id": "https://doi.org/10.48550/arXiv.2302.01607",
      "sameAs": "https://doi.org/10.48550/arXiv.2302.01607"
    },
    {
      "@type": "ScholarlyArticle",
      "datePublished": "2024",
      "author": [
        {
          "@type": "Person",
          "givenName": "Santtu",
          "familyName": "Tikka"
        },
        {
          "@type": "Person",
          "givenName": "Jouni",
          "familyName": "Helske"
        }
      ],
      "name": "Estimating Causal Effects from Panel Data with Dynamic\n    Multivariate Panel Models",
      "identifier": "10.1016/j.alcr.2024.100617",
      "pagination": "100617",
      "@id": "https://doi.org/10.1016/j.alcr.2024.100617",
      "sameAs": "https://doi.org/10.1016/j.alcr.2024.100617",
      "isPartOf": {
        "@type": "PublicationIssue",
        "datePublished": "2024",
        "isPartOf": {
          "@type": [
            "PublicationVolume",
            "Periodical"
          ],
          "volumeNumber": "60",
          "name": "Advances in Life Course Research"
        }
      }
    },
    {
      "@type": "SoftwareSourceCode",
      "datePublished": "2024",
      "author": [
        {
          "@type": "Person",
          "givenName": "Santtu",
          "familyName": "Tikka"
        },
        {
          "@type": "Person",
          "givenName": "Jouni",
          "familyName": "Helske"
        }
      ],
      "name": "dynamite: Bayesian Modeling and Causal Inference for Multivariate\n    Longitudinal Data",
      "url": "https://github.com/ropensci/dynamite",
      "description": "R package version 1.5.4"
    }
  ],
  "releaseNotes": "https://github.com/ropensci/dynamite/blob/master/NEWS.md",
  "readme": "https://github.com/ropensci/dynamite/blob/main/README.md",
  "contIntegration": [
    "https://github.com/ropensci/dynamite/actions",
    "https://app.codecov.io/gh/ropensci/dynamite?branch=main"
  ],
  "developmentStatus": "https://www.repostatus.org/#active",
  "review": {
    "@type": "Review",
    "url": "https://github.com/ropensci/software-review/issues/554",
    "provider": "https://ropensci.org"
  },
  "keywords": [
    "bayesian-inference",
    "panel-data",
    "r",
    "r-package",
    "rstats",
    "stan",
    "statistical-models"
  ]
}

GitHub Events

Total
  • Issues event: 1
  • Watch event: 4
  • Delete event: 1
  • Push event: 20
  • Create event: 1
Last Year
  • Issues event: 1
  • Watch event: 4
  • Delete event: 1
  • Push event: 20
  • Create event: 1

Issues and Pull Requests

Last synced: 6 months ago

All Time
  • Total issues: 72
  • Total pull requests: 14
  • Average time to close issues: 16 days
  • Average time to close pull requests: about 1 hour
  • Total issue authors: 11
  • Total pull request authors: 5
  • Average comments per issue: 1.51
  • Average comments per pull request: 0.21
  • Merged pull requests: 13
  • Bot issues: 0
  • Bot pull requests: 0
Past Year
  • Issues: 1
  • Pull requests: 1
  • Average time to close issues: N/A
  • Average time to close pull requests: 16 minutes
  • Issue authors: 1
  • Pull request authors: 1
  • Average comments per issue: 0.0
  • Average comments per pull request: 0.0
  • Merged pull requests: 1
  • Bot issues: 0
  • Bot pull requests: 0
Top Authors
Issue Authors
  • helske (36)
  • santikka (25)
  • palmierieugenio (2)
  • nicholasjclark (1)
  • Aariq (1)
  • joakim219 (1)
  • davidmosca (1)
  • emstruong (1)
  • DjakissO (1)
  • mpadge (1)
  • naikymen (1)
Pull Request Authors
  • santikka (8)
  • helske (3)
  • maelle (2)
  • mpadge (1)
  • jeroen (1)
Top Labels
Issue Labels
enhancement (22) bug (14) documentation (3)
Pull Request Labels

Packages

  • Total packages: 1
  • Total downloads:
    • cran 402 last-month
  • Total dependent packages: 0
  • Total dependent repositories: 0
  • Total versions: 12
  • Total maintainers: 1
cran.r-project.org: dynamite

Bayesian Modeling and Causal Inference for Multivariate Longitudinal Data

  • Versions: 12
  • Dependent Packages: 0
  • Dependent Repositories: 0
  • Downloads: 402 Last month
Rankings
Stargazers count: 13.3%
Forks count: 21.9%
Average: 27.8%
Dependent packages count: 29.8%
Dependent repos count: 35.5%
Downloads: 38.3%
Maintainers (1)
Last synced: 6 months ago

Dependencies

.github/workflows/R-CMD-check.yaml actions
  • actions/checkout v2 composite
  • r-lib/actions/check-r-package v2 composite
  • r-lib/actions/setup-pandoc v2 composite
  • r-lib/actions/setup-r v2 composite
  • r-lib/actions/setup-r-dependencies v2 composite
.github/workflows/R-CMD-check_cranrel.yaml actions
  • actions/checkout v2 composite
  • r-lib/actions/check-r-package v2 composite
  • r-lib/actions/setup-pandoc v2 composite
  • r-lib/actions/setup-r v2 composite
  • r-lib/actions/setup-r-dependencies v2 composite
.github/workflows/test-coverage.yaml actions
  • actions/checkout v3 composite
  • actions/upload-artifact v3 composite
  • r-lib/actions/setup-r v2 composite
  • r-lib/actions/setup-r-dependencies v2 composite
DESCRIPTION cran
  • R >= 3.6.0 depends
  • checkmate * imports
  • cli * imports
  • data.table * imports
  • ggplot2 * imports
  • glue * imports
  • loo * imports
  • methods * imports
  • patchwork * imports
  • posterior * imports
  • rlang * imports
  • rstan * imports
  • stats * imports
  • tibble >= 2.0.0 imports
  • utils * imports
  • bookdown * suggests
  • cmdstanr * suggests
  • covr * suggests
  • dplyr * suggests
  • knitr * suggests
  • mockthat * suggests
  • rmarkdown * suggests
  • testthat >= 3.0.0 suggests
  • tidyr * suggests