epialleleR
Fast, epiallele-aware methylation caller and reporter — an R/Bioconductor package
Science Score: 59.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
○CITATION.cff file
-
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
✓DOI references
Found 16 DOI reference(s) in README -
✓Academic publication links
Links to: ncbi.nlm.nih.gov -
✓Committers with academic emails
1 of 4 committers (25.0%) from academic institutions -
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (14.1%) to scientific vocabulary
Keywords
Keywords from Contributors
Repository
Fast, epiallele-aware methylation caller and reporter — an R/Bioconductor package
Basic Info
- Host: GitHub
- Owner: BBCG
- Language: R
- Default Branch: devel
- Homepage: https://BBCG.github.io/epialleleR/articles/epialleleR.html
- Size: 83.4 MB
Statistics
- Stars: 6
- Watchers: 1
- Forks: 1
- Open Issues: 0
- Releases: 6
Topics
Metadata Files
README.md
Fast, epiallele-aware methylation
caller and reporter 
Introduction
epialleleR is an R package for calling and reporting cytosine methylation
and hypermethylated variant epiallele frequencies (VEF) at the level of
genomic regions or individual cytosines
in next-generation sequencing data using binary alignment map (BAM) files as
an input. See below for additional functionality.

Current Features
- calling cytosine methylation and saving calls in BAM file
(
callMethylation) - creating sample BAM files given mandatory and optional BAM fields
(
simulateBam) - conventional reporting of cytosine methylation (
generateCytosineReport) - reporting the hypermethylated variant epiallele frequency (VEF) at the
level of genomic regions (
generate[Bed|Amplicon|Capture]Report) or individual cytosines (generateCytosineReport) - reporting linearised Methylated Haplotype Load (lMHL,
generateMhlReport) - extracting methylation patterns for genomic region of interest
(
extractPatterns) - visualising methylation patterns (
plotPatterns) - testing for the association between epiallele methylation
status and sequence variations (
generateVcfReport) - assessing the distribution of per-read beta values for genomic regions of
interest (
generateBedEcdf)
Recent improvements
v1.14 [BioC 3.20]
- creates pretty plots of methylation patterns
v1.12 [BioC 3.19]
- inputs long-read sequencing alignments
- full support for short-read sequencing alignments by Illumina DRAGEN, Bismark, bwa-meth, BSMAP
- RRBS-specific options
- lower memory usage
v1.10 [BioC 3.18]
- inputs both single-end and paired-end sequencing alignments
- makes and stores methylation calls
- creates sample BAM files
- reports linearised MHL
v1.4 [BioC 3.15]
- significant speed-up
- method to extract and visualize methylation patterns
v1.2 [BioC 3.14]
- even faster and more memory-efficient BAM loading (by means of HTSlib)
- min.baseq parameter to reduce the effect of low quality bases on
methylation or SNV calling (in v1.0 the output of
generateVcfReportwas equivalent to the one ofsamtools mpileup -Q 0 ...)
check out NEWS for more!
Installation
install via Bioconductor
```r if (!requireNamespace("BiocManager", quietly = TRUE)) install.packages("BiocManager")
BiocManager::install("epialleleR") ```
Install the latest version via install_github
r
library(devtools)
install_github("BBCG/epialleleR", build_vignettes=FALSE,
repos=BiocManager::repositories(),
dependencies=TRUE, type="source")
Using the package
Please read epialleleR vignette
at GitHub pages
or within the R environment: vignette("epialleleR", package="epialleleR"), or
consult the function's help pages for the extensive information on usage,
parameters and output values.
Comparison of beta, VEF and lMHL values for various use cases is given by the
values
vignette (vignette("values", package="epialleleR"))
Very brief synopsis:
```r library(epialleleR)
make methylation calls if necessary
callMethylation( input.bam.file=system.file("extdata", "test", "dragen-se-unsort-xg.bam", package="epialleleR"), output.bam.file=tempfile(pattern="output-", fileext=".bam"), genome=system.file("extdata", "test", "reference.fasta.gz", package="epialleleR") )
make a sample BAM file from scratch
simulateBam(output.bam.file=tempfile(pattern="simulated-", fileext=".bam"), pos=c(1, 2), XM=c("ZZZzzZZZ", "ZZzzzzZZ"), XG=c("CT", "AG"))
or use external files
amplicon.bam <- system.file("extdata", "amplicon010meth.bam", package="epialleleR") amplicon.bed <- system.file("extdata", "amplicon.bed", package="epialleleR") amplicon.vcf <- system.file("extdata", "amplicon.vcf.gz", package="epialleleR")
preload the data
bam.data <- preprocessBam(amplicon.bam)
methylation patterns and their plot
patterns <- extractPatterns(bam=amplicon.bam, bed=amplicon.bed, bed.row=3) plotPatterns(patterns)
CpG VEF report for individual bases
cg.vef.report <- generateCytosineReport(bam.data)
BED-guided VEF report for genomic ranges
bed.report <- generateBedReport(bam=amplicon.bam, bed=amplicon.bed, bed.type="capture")
VCF report
vcf.report <- generateVcfReport(bam=amplicon.bam, bed=amplicon.bed, vcf=amplicon.vcf, vcf.style="NCBI")
lMHL report
mhl.report <- generateMhlReport(bam=amplicon.bam) ```
Citing the epialleleR package
Oleksii Nikolaienko, Per Eystein Lønning, Stian Knappskog, epialleleR: an R/Bioconductor package for sensitive allele-specific methylation analysis in NGS data. GigaScience, Volume 12, 2023, giad087, https://doi.org/10.1093/gigascience/giad087. Data: GSE201690
Our experimental studies that use the package
Per Eystein Lonning, Oleksii Nikolaienko, Kathy Pan, Allison W. Kurian, Hans Petter Petter Eikesdal, Mary Pettinger, Garnet L Anderson, Ross L Prentice, Rowan T. Chlebowski, and Stian Knappskog. Constitutional BRCA1 methylation and risk of incident triple-negative breast cancer and high-grade serous ovarian cancer. JAMA Oncology 2022. https://doi.org/10.1001/jamaoncol.2022.3846
Oleksii Nikolaienko, Hans P. Eikesdal, Elisabet Ognedal, Bjørnar Gilje, Steinar Lundgren, Egil S. Blix, Helge Espelid, Jürgen Geisler, Stephanie Geisler, Emiel A.M. Janssen, Synnøve Yndestad, Laura Minsaas, Beryl Leirvaag, Reidun Lillestøl, Stian Knappskog, Per E. Lønning. Prenatal BRCA1 epimutations contribute significantly to triple-negative breast cancer development. Genome Medicine 2023. https://doi.org/10.1186/s13073-023-01262-8. Data: GSE243966
Oleksii Nikolaienko, Garnet L Anderson, Rowan T Chlebowski, Su Yon Jung, Holly R Harris, Stian Knappskog, and Per E Lønning. MGMT epimutations and risk of incident cancer of the colon, glioblastoma multiforme, and diffuse large B-cell lymphomas. Clinical Epigenetics 2025. https://doi.org/10.1186/s13148-025-01835-x
epialleleR at Bioconductor
License
Artistic License 2.0
Owner
- Name: Bergen Breast Cancer Group
- Login: BBCG
- Kind: organization
- Location: University of Bergen and Haukeland University Hospital
- Website: https://www.uib.no/en/rg/g18
- Repositories: 2
- Profile: https://github.com/BBCG
We explore genetic and molecular mechanisms influencing the risk and treatment result of various types of cancer
GitHub Events
Total
- Release event: 1
- Watch event: 3
- Push event: 24
- Create event: 1
Last Year
- Release event: 1
- Watch event: 3
- Push event: 24
- Create event: 1
Committers
Last synced: over 2 years ago
Top Committers
| Name | Commits | |
|---|---|---|
| Oleksii.Nikolaienko | o****o@u****o | 258 |
| Nitesh Turaga | n****a@g****m | 6 |
| J Wokaty | j****y@s****u | 2 |
| J Wokaty | j****y | 2 |
Committer Domains (Top 20 + Academic)
Issues and Pull Requests
Last synced: 6 months ago
All Time
- Total issues: 21
- Total pull requests: 15
- Average time to close issues: about 2 months
- Average time to close pull requests: 19 minutes
- Total issue authors: 5
- Total pull request authors: 1
- Average comments per issue: 1.95
- Average comments per pull request: 0.0
- Merged pull requests: 15
- Bot issues: 0
- Bot pull requests: 0
Past Year
- Issues: 0
- Pull requests: 3
- Average time to close issues: N/A
- Average time to close pull requests: 19 minutes
- Issue authors: 0
- Pull request authors: 1
- Average comments per issue: 0
- Average comments per pull request: 0.0
- Merged pull requests: 3
- Bot issues: 0
- Bot pull requests: 0
Top Authors
Issue Authors
- oleksii-nikolaienko (13)
- feihongloveworld (5)
- dpryan79 (1)
- vanreality (1)
Pull Request Authors
- oleksii-nikolaienko (24)
Top Labels
Issue Labels
Pull Request Labels
Packages
- Total packages: 1
-
Total downloads:
- bioconductor 7,648 total
- Total dependent packages: 0
- Total dependent repositories: 0
- Total versions: 5
- Total maintainers: 1
bioconductor.org: epialleleR
Fast, Epiallele-Aware Methylation Caller and Reporter
- Homepage: https://github.com/BBCG/epialleleR
- Documentation: https://bioconductor.org/packages/release/bioc/vignettes/epialleleR/inst/doc/epialleleR.pdf
- License: Artistic-2.0
-
Latest release: 1.16.0
published 10 months ago