epialleleR

Fast, epiallele-aware methylation caller and reporter — an R/Bioconductor package

https://github.com/bbcg/epialleler

Science Score: 59.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
    Found 16 DOI reference(s) in README
  • Academic publication links
    Links to: ncbi.nlm.nih.gov
  • Committers with academic emails
    1 of 4 committers (25.0%) from academic institutions
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (14.1%) to scientific vocabulary

Keywords

bioconductor dna-methylation epiallele next-generation-sequencing samtools

Keywords from Contributors

bioconductor-package immune-repertoire gene grna-sequence ontology genomics sequencing proteomics immunoinformatics interactive-visualizations
Last synced: 6 months ago · JSON representation

Repository

Fast, epiallele-aware methylation caller and reporter — an R/Bioconductor package

Basic Info
Statistics
  • Stars: 6
  • Watchers: 1
  • Forks: 1
  • Open Issues: 0
  • Releases: 6
Topics
bioconductor dna-methylation epiallele next-generation-sequencing samtools
Created about 5 years ago · Last pushed 8 months ago
Metadata Files
Readme Changelog

README.md

Fast, epiallele-aware methylation
caller and reporter logo

install with bioconda

Introduction

epialleleR is an R package for calling and reporting cytosine methylation and hypermethylated variant epiallele frequencies (VEF) at the level of genomic regions or individual cytosines in next-generation sequencing data using binary alignment map (BAM) files as an input. See below for additional functionality.

Current Features

  • calling cytosine methylation and saving calls in BAM file (callMethylation)
  • creating sample BAM files given mandatory and optional BAM fields (simulateBam)
  • conventional reporting of cytosine methylation (generateCytosineReport)
  • reporting the hypermethylated variant epiallele frequency (VEF) at the level of genomic regions (generate[Bed|Amplicon|Capture]Report) or individual cytosines (generateCytosineReport)
  • reporting linearised Methylated Haplotype Load (lMHL, generateMhlReport)
  • extracting methylation patterns for genomic region of interest (extractPatterns)
  • visualising methylation patterns (plotPatterns)
  • testing for the association between epiallele methylation status and sequence variations (generateVcfReport)
  • assessing the distribution of per-read beta values for genomic regions of interest (generateBedEcdf)

Recent improvements

v1.14 [BioC 3.20]
  • creates pretty plots of methylation patterns
v1.12 [BioC 3.19]
  • inputs long-read sequencing alignments
  • full support for short-read sequencing alignments by Illumina DRAGEN, Bismark, bwa-meth, BSMAP
  • RRBS-specific options
  • lower memory usage
v1.10 [BioC 3.18]
  • inputs both single-end and paired-end sequencing alignments
  • makes and stores methylation calls
  • creates sample BAM files
  • reports linearised MHL
v1.4 [BioC 3.15]
  • significant speed-up
  • method to extract and visualize methylation patterns
v1.2 [BioC 3.14]
  • even faster and more memory-efficient BAM loading (by means of HTSlib)
  • min.baseq parameter to reduce the effect of low quality bases on methylation or SNV calling (in v1.0 the output of generateVcfReport was equivalent to the one of samtools mpileup -Q 0 ...)

check out NEWS for more!


Installation

install via Bioconductor

```r if (!requireNamespace("BiocManager", quietly = TRUE)) install.packages("BiocManager")

BiocManager::install("epialleleR") ```

Install the latest version via install_github

r library(devtools) install_github("BBCG/epialleleR", build_vignettes=FALSE, repos=BiocManager::repositories(), dependencies=TRUE, type="source")


Using the package

Please read epialleleR vignette at GitHub pages or within the R environment: vignette("epialleleR", package="epialleleR"), or consult the function's help pages for the extensive information on usage, parameters and output values.

Comparison of beta, VEF and lMHL values for various use cases is given by the values vignette (vignette("values", package="epialleleR"))

Very brief synopsis:

```r library(epialleleR)

make methylation calls if necessary

callMethylation( input.bam.file=system.file("extdata", "test", "dragen-se-unsort-xg.bam", package="epialleleR"), output.bam.file=tempfile(pattern="output-", fileext=".bam"), genome=system.file("extdata", "test", "reference.fasta.gz", package="epialleleR") )

make a sample BAM file from scratch

simulateBam(output.bam.file=tempfile(pattern="simulated-", fileext=".bam"), pos=c(1, 2), XM=c("ZZZzzZZZ", "ZZzzzzZZ"), XG=c("CT", "AG"))

or use external files

amplicon.bam <- system.file("extdata", "amplicon010meth.bam", package="epialleleR") amplicon.bed <- system.file("extdata", "amplicon.bed", package="epialleleR") amplicon.vcf <- system.file("extdata", "amplicon.vcf.gz", package="epialleleR")

preload the data

bam.data <- preprocessBam(amplicon.bam)

methylation patterns and their plot

patterns <- extractPatterns(bam=amplicon.bam, bed=amplicon.bed, bed.row=3) plotPatterns(patterns)

CpG VEF report for individual bases

cg.vef.report <- generateCytosineReport(bam.data)

BED-guided VEF report for genomic ranges

bed.report <- generateBedReport(bam=amplicon.bam, bed=amplicon.bed, bed.type="capture")

VCF report

vcf.report <- generateVcfReport(bam=amplicon.bam, bed=amplicon.bed, vcf=amplicon.vcf, vcf.style="NCBI")

lMHL report

mhl.report <- generateMhlReport(bam=amplicon.bam) ```


Citing the epialleleR package

Oleksii Nikolaienko, Per Eystein Lønning, Stian Knappskog, epialleleR: an R/Bioconductor package for sensitive allele-specific methylation analysis in NGS data. GigaScience, Volume 12, 2023, giad087, https://doi.org/10.1093/gigascience/giad087. Data: GSE201690

Our experimental studies that use the package

Per Eystein Lonning, Oleksii Nikolaienko, Kathy Pan, Allison W. Kurian, Hans Petter Petter Eikesdal, Mary Pettinger, Garnet L Anderson, Ross L Prentice, Rowan T. Chlebowski, and Stian Knappskog. Constitutional BRCA1 methylation and risk of incident triple-negative breast cancer and high-grade serous ovarian cancer. JAMA Oncology 2022. https://doi.org/10.1001/jamaoncol.2022.3846

Oleksii Nikolaienko, Hans P. Eikesdal, Elisabet Ognedal, Bjørnar Gilje, Steinar Lundgren, Egil S. Blix, Helge Espelid, Jürgen Geisler, Stephanie Geisler, Emiel A.M. Janssen, Synnøve Yndestad, Laura Minsaas, Beryl Leirvaag, Reidun Lillestøl, Stian Knappskog, Per E. Lønning. Prenatal BRCA1 epimutations contribute significantly to triple-negative breast cancer development. Genome Medicine 2023. https://doi.org/10.1186/s13073-023-01262-8. Data: GSE243966

Oleksii Nikolaienko, Garnet L Anderson, Rowan T Chlebowski, Su Yon Jung, Holly R Harris, Stian Knappskog, and Per E Lønning. MGMT epimutations and risk of incident cancer of the colon, glioblastoma multiforme, and diffuse large B-cell lymphomas. Clinical Epigenetics 2025. https://doi.org/10.1186/s13148-025-01835-x

epialleleR at Bioconductor

release, development version


License

Artistic License 2.0

Owner

  • Name: Bergen Breast Cancer Group
  • Login: BBCG
  • Kind: organization
  • Location: University of Bergen and Haukeland University Hospital

We explore genetic and molecular mechanisms influencing the risk and treatment result of various types of cancer

GitHub Events

Total
  • Release event: 1
  • Watch event: 3
  • Push event: 24
  • Create event: 1
Last Year
  • Release event: 1
  • Watch event: 3
  • Push event: 24
  • Create event: 1

Committers

Last synced: over 2 years ago

All Time
  • Total Commits: 268
  • Total Committers: 4
  • Avg Commits per committer: 67.0
  • Development Distribution Score (DDS): 0.037
Past Year
  • Commits: 93
  • Committers: 3
  • Avg Commits per committer: 31.0
  • Development Distribution Score (DDS): 0.043
Top Committers
Name Email Commits
Oleksii.Nikolaienko o****o@u****o 258
Nitesh Turaga n****a@g****m 6
J Wokaty j****y@s****u 2
J Wokaty j****y 2
Committer Domains (Top 20 + Academic)

Issues and Pull Requests

Last synced: 6 months ago

All Time
  • Total issues: 21
  • Total pull requests: 15
  • Average time to close issues: about 2 months
  • Average time to close pull requests: 19 minutes
  • Total issue authors: 5
  • Total pull request authors: 1
  • Average comments per issue: 1.95
  • Average comments per pull request: 0.0
  • Merged pull requests: 15
  • Bot issues: 0
  • Bot pull requests: 0
Past Year
  • Issues: 0
  • Pull requests: 3
  • Average time to close issues: N/A
  • Average time to close pull requests: 19 minutes
  • Issue authors: 0
  • Pull request authors: 1
  • Average comments per issue: 0
  • Average comments per pull request: 0.0
  • Merged pull requests: 3
  • Bot issues: 0
  • Bot pull requests: 0
Top Authors
Issue Authors
  • oleksii-nikolaienko (13)
  • feihongloveworld (5)
  • dpryan79 (1)
  • vanreality (1)
Pull Request Authors
  • oleksii-nikolaienko (24)
Top Labels
Issue Labels
enhancement (2)
Pull Request Labels

Packages

  • Total packages: 1
  • Total downloads:
    • bioconductor 7,648 total
  • Total dependent packages: 0
  • Total dependent repositories: 0
  • Total versions: 5
  • Total maintainers: 1
bioconductor.org: epialleleR

Fast, Epiallele-Aware Methylation Caller and Reporter

  • Versions: 5
  • Dependent Packages: 0
  • Dependent Repositories: 0
  • Downloads: 7,648 Total
Rankings
Dependent repos count: 0.0%
Dependent packages count: 0.0%
Average: 28.3%
Downloads: 84.9%
Last synced: 6 months ago