Science Score: 39.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
○CITATION.cff file
-
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
✓DOI references
Found 1 DOI reference(s) in README -
○Academic publication links
-
○Committers with academic emails
-
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (12.3%) to scientific vocabulary
Keywords
Repository
Fast multivariate imputation by random forests.
Basic Info
- Host: GitHub
- Owner: mayer79
- License: gpl-2.0
- Language: R
- Default Branch: main
- Homepage: https://mayer79.github.io/missRanger/
- Size: 12.9 MB
Statistics
- Stars: 70
- Watchers: 10
- Forks: 11
- Open Issues: 2
- Releases: 9
Topics
Metadata Files
README.md
{missRanger} 
Overview
{missRanger} is a multivariate imputation algorithm based on random forests. It is a fast alternative to the famous 'MissForest' algorithm (Stekhoven and Buehlmann, 2012), and uses the {ranger} package (Wright and Ziegler, 2017) to fit the random forests. Since version 2.6.0, out-of-sample application is possible.
Installation
```r
From CRAN
install.packages("missRanger")
Development version
devtools::install_github("mayer79/missRanger") ```
Usage
```r library(missRanger)
set.seed(3)
irisNA <- generateNA(iris, p = 0.1) head(irisNA)
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
5.1 3.5 1.4 0.2 setosa
4.9 3.0 1.4 NA setosa
4.7 3.2 1.3 0.2 setosa
4.6 3.1 1.5 0.2
NA 3.6 1.4 0.2 setosa
5.4 3.9 1.7 0.4
irisfilled <- missRanger(irisNA, pmm.k = 5, num.trees = 100) head(iris_filled)
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.2 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa
```
How it works
The algorithm iterates until the average out-of-bag (OOB) error of the forests stops improving. The missing values are filled by OOB predictions of the best iteration, optionally followed by predictive mean matching (PMM). The PMM step avoids values not present in the original data (like a value 0.3334 in a 0-1 coded variable). Furthermore, PMM raises the variance in the resulting conditional distributions to a more realistic level, a crucial property for multiple imputation.
Check-out the vignettes for more info, and for how to use missRanger() in multiple imputation.
References
- Stekhoven D. J., Buehlmann, P. (2012). MissForest - non-parametric missing value imputation for mixed-type data. Bioinformatics, 28(1), 112-118.
- Marvin N. Wright, Andreas Ziegler (2017). ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R. Journal of Statistical Software, 77(1), 1-17. doi:10.18637/jss.v077.i01
Owner
- Name: Michael Mayer
- Login: mayer79
- Kind: user
- Repositories: 12
- Profile: https://github.com/mayer79
Responsible statistics | ML
GitHub Events
Total
- Create event: 4
- Release event: 1
- Issues event: 8
- Watch event: 4
- Delete event: 4
- Issue comment event: 5
- Push event: 10
- Pull request event: 6
Last Year
- Create event: 4
- Release event: 1
- Issues event: 8
- Watch event: 4
- Delete event: 4
- Issue comment event: 5
- Push event: 10
- Pull request event: 6
Committers
Last synced: 9 months ago
Top Committers
| Name | Commits | |
|---|---|---|
| Michael Mayer | m****9@g****m | 166 |
| Michael Mayer | m****r@c****h | 31 |
| MMA | M****A@I****L | 8 |
| olivroy | 5****y | 4 |
| Thierry Gosselin | t****n@i****m | 1 |
| Jamey McDowell | j****l@g****m | 1 |
| Andrew Landgraf | a****d | 1 |
| MMA | M****A@n****2 | 1 |
Committer Domains (Top 20 + Academic)
Issues and Pull Requests
Last synced: 7 months ago
All Time
- Total issues: 42
- Total pull requests: 44
- Average time to close issues: 3 months
- Average time to close pull requests: about 16 hours
- Total issue authors: 28
- Total pull request authors: 6
- Average comments per issue: 2.33
- Average comments per pull request: 0.64
- Merged pull requests: 41
- Bot issues: 0
- Bot pull requests: 0
Past Year
- Issues: 8
- Pull requests: 18
- Average time to close issues: 12 days
- Average time to close pull requests: about 20 hours
- Issue authors: 5
- Pull request authors: 1
- Average comments per issue: 1.75
- Average comments per pull request: 0.28
- Merged pull requests: 18
- Bot issues: 0
- Bot pull requests: 0
Top Authors
Issue Authors
- mayer79 (8)
- thierrygosselin (5)
- DarioS (3)
- bgall (2)
- jeandigitale (1)
- lime-n (1)
- ldliao (1)
- AurelieMich (1)
- LouChen-med (1)
- stephematician (1)
- joannawolthuis (1)
- visokie (1)
- NamLQ (1)
- James-Yong-XIANG (1)
- JameyPMcDowell (1)
Pull Request Authors
- mayer79 (53)
- pdwaggoner (3)
- olivroy (2)
- thierrygosselin (1)
- JameyPMcDowell (1)
- andland (1)
Top Labels
Issue Labels
Pull Request Labels
Packages
- Total packages: 1
-
Total downloads:
- cran 2,724 last-month
- Total docker downloads: 42,128
- Total dependent packages: 7
- Total dependent repositories: 13
- Total versions: 16
- Total maintainers: 1
cran.r-project.org: missRanger
Fast Imputation of Missing Values
- Homepage: https://github.com/mayer79/missRanger
- Documentation: http://cran.r-project.org/web/packages/missRanger/missRanger.pdf
- License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
-
Latest release: 2.6.1
published about 1 year ago
Rankings
Maintainers (1)
Dependencies
- R >= 3.5.0 depends
- FNN * imports
- ranger * imports
- stats * imports
- utils * imports
- dplyr * suggests
- knitr * suggests
- mice * suggests
- rmarkdown * suggests
- survival * suggests
- testthat >= 3.0.0 suggests
- actions/checkout v3 composite
- r-lib/actions/check-r-package v2 composite
- r-lib/actions/setup-pandoc v2 composite
- r-lib/actions/setup-r v2 composite
- r-lib/actions/setup-r-dependencies v2 composite
- JamesIves/github-pages-deploy-action v4.4.1 composite
- actions/checkout v3 composite
- r-lib/actions/setup-pandoc v2 composite
- r-lib/actions/setup-r v2 composite
- r-lib/actions/setup-r-dependencies v2 composite
- actions/checkout v3 composite
- actions/upload-artifact v3 composite
- r-lib/actions/setup-r v2 composite
- r-lib/actions/setup-r-dependencies v2 composite