Science Score: 36.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
○CITATION.cff file
-
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
○DOI references
-
○Academic publication links
-
✓Committers with academic emails
7 of 34 committers (20.6%) from academic institutions -
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (4.3%) to scientific vocabulary
Keywords
c
c-extension
fast
numpy
python
Keywords from Contributors
alignment
flexible
closember
gtk
qt
tk
wx
tensor
astronomy
astrophysics
Last synced: 6 months ago
·
JSON representation
Repository
Fast NumPy array functions written in C
Basic Info
Statistics
- Stars: 1,135
- Watchers: 34
- Forks: 110
- Open Issues: 46
- Releases: 4
Topics
c
c-extension
fast
numpy
python
Created about 15 years ago
· Last pushed 6 months ago
Metadata Files
Readme
License
README.rst
.. image:: https://github.com/pydata/bottleneck/workflows/Github%20Actions/badge.svg
:target: https://github.com/pydata/bottleneck/actions
==========
Bottleneck
==========
Bottleneck is a collection of fast NumPy array functions written in C.
Let's give it a try. Create a NumPy array:
.. code-block:: pycon
>>> import numpy as np
>>> a = np.array([1, 2, np.nan, 4, 5])
Find the nanmean:
.. code-block:: pycon
>>> import bottleneck as bn
>>> bn.nanmean(a)
3.0
Moving window mean:
.. code-block:: pycon
>>> bn.move_mean(a, window=2, min_count=1)
array([ 1. , 1.5, 2. , 4. , 4.5])
Benchmark
=========
Bottleneck comes with a benchmark suite:
.. code-block:: pycon
>>> bn.bench()
Bottleneck performance benchmark
Bottleneck 1.3.0.dev0+122.gb1615d7; Numpy 1.16.4
Speed is NumPy time divided by Bottleneck time
NaN means approx one-fifth NaNs; float64 used
no NaN no NaN NaN no NaN NaN
(100,) (1000,1000)(1000,1000)(1000,1000)(1000,1000)
axis=0 axis=0 axis=0 axis=1 axis=1
nansum 29.7 1.4 1.6 2.0 2.1
nanmean 99.0 2.0 1.8 3.2 2.5
nanstd 145.6 1.8 1.8 2.7 2.5
nanvar 138.4 1.8 1.8 2.8 2.5
nanmin 27.6 0.5 1.7 0.7 2.4
nanmax 26.6 0.6 1.6 0.7 2.5
median 120.6 1.3 4.9 1.1 5.7
nanmedian 117.8 5.0 5.7 4.8 5.5
ss 13.2 1.2 1.3 1.5 1.5
nanargmin 66.8 5.5 4.8 3.5 7.1
nanargmax 57.6 2.9 5.1 2.5 5.3
anynan 10.2 0.3 52.3 0.8 41.6
allnan 15.1 196.0 156.3 135.8 111.2
rankdata 45.9 1.2 1.2 2.1 2.1
nanrankdata 50.5 1.4 1.3 2.4 2.3
partition 3.3 1.1 1.6 1.0 1.5
argpartition 3.4 1.2 1.5 1.1 1.6
replace 9.0 1.5 1.5 1.5 1.5
push 1565.6 5.9 7.0 13.0 10.9
move_sum 2159.3 31.1 83.6 186.9 182.5
move_mean 6264.3 66.2 111.9 361.1 246.5
move_std 8653.6 86.5 163.7 232.0 317.7
move_var 8856.0 96.3 171.6 267.9 332.9
move_min 1186.6 13.4 30.9 23.5 45.0
move_max 1188.0 14.6 29.9 23.5 46.0
move_argmin 2568.3 33.3 61.0 49.2 86.8
move_argmax 2475.8 30.9 58.6 45.0 82.8
move_median 2236.9 153.9 151.4 171.3 166.9
move_rank 847.1 1.2 1.4 2.3 2.6
You can also run a detailed benchmark for a single function using, for
example, the command:
.. code-block:: pycon
>>> bn.bench_detailed("move_median", fraction_nan=0.3)
Only arrays with data type (dtype) int32, int64, float32, and float64 are
accelerated. All other dtypes result in calls to slower, unaccelerated
functions. In the rare case of a byte-swapped input array (e.g. a big-endian
array on a little-endian operating system) the function will not be
accelerated regardless of dtype.
Where
=====
=================== ========================================================
download https://pypi.python.org/pypi/Bottleneck
docs https://bottleneck.readthedocs.io
code https://github.com/pydata/bottleneck
mailing list https://groups.google.com/group/bottle-neck
=================== ========================================================
License
=======
Bottleneck is distributed under a Simplified BSD license. See the LICENSE file
and LICENSES directory for details.
Install
=======
Bottleneck provides binary wheels on PyPI for all the most common platforms.
Binary packages are also available in conda-forge. We recommend installing binaries
with ``pip``, ``uv``, ``conda`` or similar - it's faster and easier than building
from source.
Installing from source
----------------------
Requirements:
======================== ============================================================================
Bottleneck Python >=3.9; NumPy 1.16.0+
Compile gcc, clang, MinGW or MSVC
Unit tests pytest
Documentation sphinx, numpydoc
======================== ============================================================================
To install Bottleneck on Linux, Mac OS X, et al.:
.. code-block:: console
$ pip install .
To install bottleneck on Windows, first install MinGW and add it to your
system path. Then install Bottleneck with the command:
.. code-block:: console
$ python setup.py install --compiler=mingw32
Unit tests
==========
After you have installed Bottleneck, run the suite of unit tests:
.. code-block:: pycon
In [1]: import bottleneck as bn
In [2]: bn.test()
============================= test session starts =============================
platform linux -- Python 3.7.4, pytest-4.3.1, py-1.8.0, pluggy-0.12.0
hypothesis profile 'default' -> database=DirectoryBasedExampleDatabase('/home/chris/code/bottleneck/.hypothesis/examples')
rootdir: /home/chris/code/bottleneck, inifile: setup.cfg
plugins: openfiles-0.3.2, remotedata-0.3.2, doctestplus-0.3.0, mock-1.10.4, forked-1.0.2, cov-2.7.1, hypothesis-4.32.2, xdist-1.26.1, arraydiff-0.3
collected 190 items
bottleneck/tests/input_modification_test.py ........................... [ 14%]
.. [ 15%]
bottleneck/tests/list_input_test.py ............................. [ 30%]
bottleneck/tests/move_test.py ................................. [ 47%]
bottleneck/tests/nonreduce_axis_test.py .................... [ 58%]
bottleneck/tests/nonreduce_test.py .......... [ 63%]
bottleneck/tests/reduce_test.py ....................................... [ 84%]
............ [ 90%]
bottleneck/tests/scalar_input_test.py .................. [100%]
========================= 190 passed in 46.42 seconds =========================
Out[2]: True
If developing in the git repo, simply run ``py.test``
Owner
- Name: Python for Data
- Login: pydata
- Kind: organization
- Website: http://groups.google.com/forum/?fromgroups#!forum/pydata
- Repositories: 28
- Profile: https://github.com/pydata
GitHub Events
Total
- Create event: 5
- Commit comment event: 5
- Issues event: 21
- Watch event: 71
- Member event: 1
- Issue comment event: 68
- Push event: 14
- Pull request review comment event: 12
- Pull request review event: 11
- Pull request event: 27
- Fork event: 9
Last Year
- Create event: 5
- Commit comment event: 5
- Issues event: 21
- Watch event: 71
- Member event: 1
- Issue comment event: 68
- Push event: 14
- Pull request review comment event: 12
- Pull request review event: 11
- Pull request event: 27
- Fork event: 9
Committers
Last synced: 8 months ago
Top Committers
| Name | Commits | |
|---|---|---|
| Keith Goodman | k****n@g****m | 849 |
| Christopher Whelan | t****n@g****m | 229 |
| Moritz E. Beber | m****r@p****t | 27 |
| Ruben Di Battista | r****a@g****m | 27 |
| Pietro Battiston | me@p****t | 15 |
| Stephan Hoyer | s****r@c****m | 14 |
| Dougal Sutherland | d****l@g****m | 12 |
| Ralf Gommers | r****s@g****m | 10 |
| Jenn Olsen | j****4@g****m | 7 |
| Santiago Castro | s****o@u****u | 6 |
| Lev Givon | l****v@c****u | 5 |
| Christoph Gohlke | c****e@u****u | 4 |
| Thomas Robitaille | t****e@g****m | 3 |
| Jaime Fernandez | j****o@g****m | 2 |
| Gábor Lipták | g****k@g****m | 2 |
| Michał Górny | m****y@g****g | 2 |
| Ruben DI BATTISTA | r****a@q****m | 2 |
| odidev | o****v@p****m | 1 |
| jmcloughlin | J****n@b****m | 1 |
| Victor Stinner | v****r@p****g | 1 |
| RichardScottOZ | 7****Z | 1 |
| Nilesh Patra | n****h@n****o | 1 |
| Mathias Hauser | m****r@e****h | 1 |
| Martin K. Scherer | m****r@f****e | 1 |
| John Benediktsson | m****7@g****m | 1 |
| Jens Hedegaard Nielsen | j****n@u****k | 1 |
| Ghislain Antony Vaillant | g****l | 1 |
| Edgar Andrés Margffoy Tuay | a****y@g****m | 1 |
| Daniel Hakimi | D****i@g****m | 1 |
| Chris Burroughs | c****s@g****m | 1 |
| and 4 more... | ||
Committer Domains (Top 20 + Academic)
fri.uni-lj.si: 1
bnavigator.de: 1
ucl.ac.uk: 1
fu-berlin.de: 1
env.ethz.ch: 1
nileshpatra.info: 1
python.org: 1
berkeleyanalytics.com: 1
puresoftware.com: 1
qube-rt.com: 1
gentoo.org: 1
uci.edu: 1
columbia.edu: 1
umich.edu: 1
climate.com: 1
pietrobattiston.it: 1
posteo.net: 1
Issues and Pull Requests
Last synced: 6 months ago
All Time
- Total issues: 68
- Total pull requests: 104
- Average time to close issues: over 1 year
- Average time to close pull requests: about 2 months
- Total issue authors: 64
- Total pull request authors: 25
- Average comments per issue: 4.24
- Average comments per pull request: 1.37
- Merged pull requests: 76
- Bot issues: 0
- Bot pull requests: 0
Past Year
- Issues: 11
- Pull requests: 27
- Average time to close issues: 2 months
- Average time to close pull requests: 17 days
- Issue authors: 10
- Pull request authors: 4
- Average comments per issue: 1.73
- Average comments per pull request: 1.67
- Merged pull requests: 20
- Bot issues: 0
- Bot pull requests: 0
Top Authors
Issue Authors
- jkadbear (2)
- rgommers (2)
- RubendeBruin (2)
- sysy007uuu (2)
- ctwardy (1)
- veenstrajelmer (1)
- hpretl (1)
- wukan1986 (1)
- astrojuanlu (1)
- Snape3058 (1)
- bscully27 (1)
- Kinzowa (1)
- parmar652 (1)
- cwiede (1)
- OutSquareCapital (1)
Pull Request Authors
- rdbisme (28)
- qwhelan (26)
- rgommers (18)
- astrofrog (3)
- stonebig (3)
- bnavigator (2)
- cburroughs (2)
- itsjohnward (2)
- andfoy (2)
- gliptak (2)
- mark-thm (2)
- lusewell (1)
- nileshpatra (1)
- wukan1986 (1)
- andrii-riazanov (1)
Top Labels
Issue Labels
bug (39)
packaging (4)
enhancement (1)
Pull Request Labels
packaging (7)
enhancement (1)
Packages
- Total packages: 5
-
Total downloads:
- pypi 3,932,046 last-month
- Total docker downloads: 360
-
Total dependent packages: 190
(may contain duplicates) -
Total dependent repositories: 2,967
(may contain duplicates) - Total versions: 106
- Total maintainers: 4
pypi.org: bottleneck
Fast NumPy array functions written in C
- Homepage: https://github.com/pydata/bottleneck
- Documentation: https://bottleneck.readthedocs.io/
- License: Simplified BSD
-
Latest release: 1.5.0
published 9 months ago
Rankings
Dependent packages count: 0.1%
Dependent repos count: 0.4%
Downloads: 0.4%
Average: 1.7%
Stargazers count: 2.1%
Docker downloads count: 2.5%
Forks count: 4.6%
Last synced:
6 months ago
spack.io: py-bottleneck
A collection of fast NumPy array functions written in Cython.
- Homepage: https://github.com/pydata/bottleneck
- License: []
-
Latest release: 1.5.0
published 6 months ago
Rankings
Dependent repos count: 0.0%
Average: 5.8%
Dependent packages count: 11.6%
Maintainers (1)
Last synced:
6 months ago
proxy.golang.org: github.com/pydata/bottleneck
- Documentation: https://pkg.go.dev/github.com/pydata/bottleneck#section-documentation
- License: bsd-2-clause
-
Latest release: v1.5.0
published 9 months ago
Rankings
Stargazers count: 2.1%
Forks count: 2.6%
Average: 6.3%
Dependent packages count: 9.6%
Dependent repos count: 10.8%
Last synced:
6 months ago
conda-forge.org: bottleneck
Bottleneck is a collection of fast NumPy array functions written in Cython.
- Homepage: https://github.com/pydata/bottleneck
- License: BSD-2-Clause
-
Latest release: 1.3.5
published over 3 years ago
Rankings
Dependent repos count: 0.8%
Dependent packages count: 1.5%
Average: 8.7%
Stargazers count: 13.5%
Forks count: 18.8%
Last synced:
6 months ago
anaconda.org: bottleneck
Bottleneck is a collection of fast NumPy array functions written in Cython.
- Homepage: https://github.com/pydata/bottleneck
- License: BSD-2-Clause
-
Latest release: 1.4.2
published over 1 year ago
Rankings
Dependent repos count: 4.7%
Dependent packages count: 4.9%
Average: 16.5%
Stargazers count: 24.7%
Forks count: 31.7%
Last synced:
6 months ago
Dependencies
setup.py
pypi
- numpy *
.github/workflows/ci.yml
actions
- actions/checkout v2 composite
- actions/checkout v3 composite
- actions/download-artifact v3 composite
- actions/setup-python v2 composite
- actions/upload-artifact v3 composite
- pypa/cibuildwheel v2.7.0 composite
- pypa/gh-action-pypi-publish v1.5.0 composite
bottleneck/tests/docker/centos_7_min_deps/Dockerfile
docker
- centos 7 build
bottleneck/tests/docker/centos_8_min_deps/Dockerfile
docker
- centos 8 build
bottleneck/tests/docker/ubuntu_devel_min_deps/Dockerfile
docker
- ubuntu devel build
bottleneck/tests/docker/ubuntu_lts_min_deps/Dockerfile
docker
- ubuntu latest build