msaenet
🧲 Multi-step adaptive estimation for reducing false positive selection in sparse regressions
Science Score: 39.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
â—‹CITATION.cff file
-
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
✓DOI references
Found 1 DOI reference(s) in README -
â—‹Academic publication links
-
â—‹Committers with academic emails
-
â—‹Institutional organization owner
-
â—‹JOSS paper metadata
-
â—‹Scientific vocabulary similarity
Low similarity (18.1%) to scientific vocabulary
Keywords
false-positive-control
high-dimensional-data
linear-regression
machine-learning
variable-selection
Last synced: 6 months ago
·
JSON representation
Repository
🧲 Multi-step adaptive estimation for reducing false positive selection in sparse regressions
Basic Info
- Host: GitHub
- Owner: nanxstats
- License: gpl-3.0
- Language: R
- Default Branch: master
- Homepage: https://nanx.me/msaenet/
- Size: 13.5 MB
Statistics
- Stars: 13
- Watchers: 4
- Forks: 7
- Open Issues: 6
- Releases: 16
Topics
false-positive-control
high-dimensional-data
linear-regression
machine-learning
variable-selection
Created over 9 years ago
· Last pushed over 1 year ago
Metadata Files
Readme
Changelog
Contributing
License
Code of conduct
README.Rmd
---
output: github_document
---
```{r, include = FALSE}
knitr::knit_hooks$set(pngquant = knitr::hook_pngquant)
knitr::opts_chunk$set(
echo = FALSE,
message = FALSE,
warning = FALSE,
collapse = TRUE,
comment = "#>",
fig.path = "man/figures/README-",
dev = "ragg_png",
dpi = 150,
fig.retina = 2,
fig.width = 10,
fig.height = 5,
out.width = "100%",
pngquant = "--speed=1 --quality=80"
)
```
# msaenet
[](https://github.com/nanxstats/msaenet/actions/workflows/R-CMD-check.yaml)
[](https://cran.r-project.org/package=msaenet)
[](https://cran.r-project.org/package=msaenet)
msaenet implements the multi-step adaptive elastic-net (MSAENet) algorithm for feature selection in high-dimensional regressions proposed in Xiao and Xu (2015) [[PDF](https://nanx.me/papers/msaenet.pdf)].
Nonconvex multi-step adaptive estimations based on MCP-net or SCAD-net are also supported.
Check `vignette("msaenet")` to get started.
## Installation
You can install msaenet from CRAN:
```r
install.packages("msaenet")
```
Or try the development version on GitHub:
```r
remotes::install_github("nanxstats/msaenet")
```
## Citation
To cite the msaenet package in publications, please use
> Nan Xiao and Qing-Song Xu. (2015). Multi-step adaptive elastic-net: reducing false positives in high-dimensional variable selection. _Journal of Statistical Computation and Simulation_ 85(18), 3755--3765.
A BibTeX entry for LaTeX users is
```bibtex
@article{xiao2015multi,
title = {Multi-step adaptive elastic-net: reducing false positives in high-dimensional variable selection},
author = {Nan Xiao and Qing-Song Xu},
journal = {Journal of Statistical Computation and Simulation},
volume = {85},
number = {18},
pages = {3755--3765},
year = {2015},
doi = {10.1080/00949655.2015.1016944}
}
```
## Gallery
### Adaptive Elastic-Net / Multi-Step Adaptive Elastic-Net
```{r}
library("msaenet")
dat <- msaenet.sim.gaussian(
n = 500, p = 500, rho = 0.8,
coef = c(rep(-1, 2), rep(1, 3)), snr = 1.5, p.train = 0.5,
seed = 1001
)
```
```{r}
#| msaenet
aenet.fit <- aenet(
dat$x.tr, dat$y.tr,
alphas = seq(0.1, 0.9, 0.1), seed = 1003
)
msaenet.fit <- msaenet(
dat$x.tr, dat$y.tr,
alphas = seq(0.1, 0.9, 0.1),
nsteps = 5L, tune.nsteps = "ebic",
seed = 1003
)
par(mfrow = c(1, 2))
plot(aenet.fit)
plot(msaenet.fit)
```
### Adaptive MCP-Net / Multi-Step Adaptive MCP-Net
```{r}
#| msamnet
amnet.fit <- amnet(
dat$x.tr, dat$y.tr,
alphas = seq(0.1, 0.9, 0.1), seed = 1003
)
msamnet.fit <- msamnet(
dat$x.tr, dat$y.tr,
gammas = 3, alphas = seq(0.1, 0.9, 0.1),
nsteps = 4L, tune.nsteps = "ebic",
seed = 1003
)
par(mfrow = c(1, 2))
plot(amnet.fit)
plot(msamnet.fit)
```
### Adaptive SCAD-Net / Multi-Step Adaptive SCAD-Net
```{r}
#| msasnet
asnet.fit <- asnet(
dat$x.tr, dat$y.tr,
alphas = seq(0.1, 0.9, 0.1), seed = 1003
)
msasnet.fit <- msasnet(
dat$x.tr, dat$y.tr,
gammas = 3.7, alphas = seq(0.1, 0.9, 0.1),
nsteps = 4L, tune.nsteps = "ebic",
seed = 1003
)
par(mfrow = c(1, 2))
plot(asnet.fit)
plot(msasnet.fit)
```
## Contribute
To contribute to this project, please take a look at the
[Contributing Guidelines](https://nanx.me/msaenet/CONTRIBUTING.html) first.
Please note that the msaenet project is released with a
[Contributor Code of Conduct](https://nanx.me/msaenet/CODE_OF_CONDUCT.html).
By contributing to this project, you agree to abide by its terms.
## License
msaenet is free and open source software, licensed under GPL-3.
Owner
- Name: Nan Xiao
- Login: nanxstats
- Kind: user
- Location: Upper Gwynedd, PA
- Company: Merck & Co.
- Website: https://nanx.me
- Twitter: nanxstats
- Repositories: 144
- Profile: https://github.com/nanxstats
Statistician
GitHub Events
Total
Last Year
Committers
Last synced: over 2 years ago
Top Committers
| Name | Commits | |
|---|---|---|
| Nan Xiao | r****t@g****m | 118 |
| Nan Xiao | me@n****e | 17 |
Committer Domains (Top 20 + Academic)
nanx.me: 1
Issues and Pull Requests
Last synced: 6 months ago
All Time
- Total issues: 18
- Total pull requests: 4
- Average time to close issues: 6 months
- Average time to close pull requests: 1 minute
- Total issue authors: 5
- Total pull request authors: 1
- Average comments per issue: 1.17
- Average comments per pull request: 0.0
- Merged pull requests: 4
- Bot issues: 0
- Bot pull requests: 0
Past Year
- Issues: 4
- Pull requests: 0
- Average time to close issues: N/A
- Average time to close pull requests: N/A
- Issue authors: 1
- Pull request authors: 0
- Average comments per issue: 0.0
- Average comments per pull request: 0
- Merged pull requests: 0
- Bot issues: 0
- Bot pull requests: 0
Top Authors
Issue Authors
- nanxstats (11)
- runnytone (2)
- mwh3780 (2)
- xingxingyanjing (1)
- kevinegan31 (1)
Pull Request Authors
- nanxstats (7)
Top Labels
Issue Labels
enhancement (3)
chore (1)
documentation (1)
question (1)
bug (1)
cran (1)
Pull Request Labels
chore (1)
Packages
- Total packages: 1
-
Total downloads:
- cran 554 last-month
- Total docker downloads: 192
- Total dependent packages: 1
- Total dependent repositories: 1
- Total versions: 16
- Total maintainers: 1
cran.r-project.org: msaenet
Multi-Step Adaptive Estimation Methods for Sparse Regressions
- Homepage: https://nanx.me/msaenet/
- Documentation: http://cran.r-project.org/web/packages/msaenet/msaenet.pdf
- License: GPL (≥ 3)
-
Latest release: 3.1.2
published almost 2 years ago
Rankings
Forks count: 9.6%
Stargazers count: 14.6%
Average: 23.3%
Dependent repos count: 23.9%
Docker downloads count: 27.4%
Dependent packages count: 28.7%
Downloads: 35.4%
Maintainers (1)
Last synced:
6 months ago
Dependencies
DESCRIPTION
cran
- R >= 3.0.2 depends
- Matrix * imports
- foreach * imports
- glmnet * imports
- mvtnorm * imports
- ncvreg >= 3.8 imports
- survival * imports
- doParallel * suggests
- knitr * suggests
- rmarkdown * suggests
.github/workflows/R-CMD-check.yaml
actions
- actions/checkout v4 composite
- r-lib/actions/check-r-package v2 composite
- r-lib/actions/setup-pandoc v2 composite
- r-lib/actions/setup-r v2 composite
- r-lib/actions/setup-r-dependencies v2 composite
.github/workflows/pkgdown.yaml
actions
- JamesIves/github-pages-deploy-action v4.5.0 composite
- actions/checkout v4 composite
- r-lib/actions/setup-pandoc v2 composite
- r-lib/actions/setup-r v2 composite
- r-lib/actions/setup-r-dependencies v2 composite