ray

Ray is an AI compute engine. Ray consists of a core distributed runtime and a set of AI Libraries for accelerating ML workloads.

https://github.com/ray-project/ray

Science Score: 46.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
  • Academic publication links
    Links to: arxiv.org
  • Committers with academic emails
    66 of 1151 committers (5.7%) from academic institutions
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (10.9%) to scientific vocabulary

Keywords

data-science deep-learning deployment distributed hyperparameter-optimization hyperparameter-search large-language-models llm llm-inference llm-serving machine-learning optimization parallel python pytorch ray reinforcement-learning rllib serving tensorflow

Keywords from Contributors

transformer tensor jax autograd agents langchain cryptocurrency audio gym mlops
Last synced: 6 months ago · JSON representation

Repository

Ray is an AI compute engine. Ray consists of a core distributed runtime and a set of AI Libraries for accelerating ML workloads.

Basic Info
  • Host: GitHub
  • Owner: ray-project
  • License: apache-2.0
  • Language: Python
  • Default Branch: master
  • Homepage: https://ray.io
  • Size: 561 MB
Statistics
  • Stars: 38,771
  • Watchers: 490
  • Forks: 6,759
  • Open Issues: 3,031
  • Releases: 112
Topics
data-science deep-learning deployment distributed hyperparameter-optimization hyperparameter-search large-language-models llm llm-inference llm-serving machine-learning optimization parallel python pytorch ray reinforcement-learning rllib serving tensorflow
Created over 9 years ago · Last pushed 6 months ago
Metadata Files
Readme Contributing License Codeowners Security

README.rst

.. image:: https://github.com/ray-project/ray/raw/master/doc/source/images/ray_header_logo.png

.. image:: https://readthedocs.org/projects/ray/badge/?version=master
    :target: http://docs.ray.io/en/master/?badge=master

.. image:: https://img.shields.io/badge/Ray-Join%20Slack-blue
    :target: https://www.ray.io/join-slack

.. image:: https://img.shields.io/badge/Discuss-Ask%20Questions-blue
    :target: https://discuss.ray.io/

.. image:: https://img.shields.io/twitter/follow/raydistributed.svg?style=social&logo=twitter
    :target: https://x.com/raydistributed

.. image:: https://img.shields.io/badge/Get_started_for_free-3C8AE9?logo=data%3Aimage%2Fpng%3Bbase64%2CiVBORw0KGgoAAAANSUhEUgAAABAAAAAQCAYAAAAf8%2F9hAAAAAXNSR0IArs4c6QAAAERlWElmTU0AKgAAAAgAAYdpAAQAAAABAAAAGgAAAAAAA6ABAAMAAAABAAEAAKACAAQAAAABAAAAEKADAAQAAAABAAAAEAAAAAA0VXHyAAABKElEQVQ4Ea2TvWoCQRRGnWCVWChIIlikC9hpJdikSbGgaONbpAoY8gKBdAGfwkfwKQypLQ1sEGyMYhN1Pd%2B6A8PqwBZeOHt%2FvsvMnd3ZXBRFPQjBZ9K6OY8ZxF%2B0IYw9PW3qz8aY6lk92bZ%2BVqSI3oC9T7%2FyCVnrF1ngj93us%2B540sf5BrCDfw9b6jJ5lx%2FyjtGKBBXc3cnqx0INN4ImbI%2Bl%2BPnI8zWfFEr4chLLrWHCp9OO9j19Kbc91HX0zzzBO8EbLK2Iv4ZvNO3is3h6jb%2BCwO0iL8AaWqB7ILPTxq3kDypqvBuYuwswqo6wgYJbT8XxBPZ8KS1TepkFdC79TAHHce%2F7LbVioi3wEfTpmeKtPRGEeoldSP%2FOeoEftpP4BRbgXrYZefsAI%2BP9JU7ImyEAAAAASUVORK5CYII%3D
   :target: https://www.anyscale.com/ray-on-anyscale?utm_source=github&utm_medium=ray_readme&utm_campaign=get_started_badge

Ray is a unified framework for scaling AI and Python applications. Ray consists of a core distributed runtime and a set of AI libraries for simplifying ML compute:

.. image:: https://github.com/ray-project/ray/raw/master/doc/source/images/what-is-ray-padded.svg

..
  https://docs.google.com/drawings/d/1Pl8aCYOsZCo61cmp57c7Sja6HhIygGCvSZLi_AuBuqo/edit

Learn more about `Ray AI Libraries`_:

- `Data`_: Scalable Datasets for ML
- `Train`_: Distributed Training
- `Tune`_: Scalable Hyperparameter Tuning
- `RLlib`_: Scalable Reinforcement Learning
- `Serve`_: Scalable and Programmable Serving

Or more about `Ray Core`_ and its key abstractions:

- `Tasks`_: Stateless functions executed in the cluster.
- `Actors`_: Stateful worker processes created in the cluster.
- `Objects`_: Immutable values accessible across the cluster.

Learn more about Monitoring and Debugging:

- Monitor Ray apps and clusters with the `Ray Dashboard `__.
- Debug Ray apps with the `Ray Distributed Debugger `__.

Ray runs on any machine, cluster, cloud provider, and Kubernetes, and features a growing
`ecosystem of community integrations`_.

Install Ray with: ``pip install ray``. For nightly wheels, see the
`Installation page `__.

.. _`Serve`: https://docs.ray.io/en/latest/serve/index.html
.. _`Data`: https://docs.ray.io/en/latest/data/dataset.html
.. _`Workflow`: https://docs.ray.io/en/latest/workflows/
.. _`Train`: https://docs.ray.io/en/latest/train/train.html
.. _`Tune`: https://docs.ray.io/en/latest/tune/index.html
.. _`RLlib`: https://docs.ray.io/en/latest/rllib/index.html
.. _`ecosystem of community integrations`: https://docs.ray.io/en/latest/ray-overview/ray-libraries.html


Why Ray?
--------

Today's ML workloads are increasingly compute-intensive. As convenient as they are, single-node development environments such as your laptop cannot scale to meet these demands.

Ray is a unified way to scale Python and AI applications from a laptop to a cluster.

With Ray, you can seamlessly scale the same code from a laptop to a cluster. Ray is designed to be general-purpose, meaning that it can performantly run any kind of workload. If your application is written in Python, you can scale it with Ray, no other infrastructure required.

More Information
----------------

- `Documentation`_
- `Ray Architecture whitepaper`_
- `Exoshuffle: large-scale data shuffle in Ray`_
- `Ownership: a distributed futures system for fine-grained tasks`_
- `RLlib paper`_
- `Tune paper`_

*Older documents:*

- `Ray paper`_
- `Ray HotOS paper`_
- `Ray Architecture v1 whitepaper`_

.. _`Ray AI Libraries`: https://docs.ray.io/en/latest/ray-air/getting-started.html
.. _`Ray Core`: https://docs.ray.io/en/latest/ray-core/walkthrough.html
.. _`Tasks`: https://docs.ray.io/en/latest/ray-core/tasks.html
.. _`Actors`: https://docs.ray.io/en/latest/ray-core/actors.html
.. _`Objects`: https://docs.ray.io/en/latest/ray-core/objects.html
.. _`Documentation`: http://docs.ray.io/en/latest/index.html
.. _`Ray Architecture v1 whitepaper`: https://docs.google.com/document/d/1lAy0Owi-vPz2jEqBSaHNQcy2IBSDEHyXNOQZlGuj93c/preview
.. _`Ray Architecture whitepaper`: https://docs.google.com/document/d/1tBw9A4j62ruI5omIJbMxly-la5w4q_TjyJgJL_jN2fI/preview
.. _`Exoshuffle: large-scale data shuffle in Ray`: https://arxiv.org/abs/2203.05072
.. _`Ownership: a distributed futures system for fine-grained tasks`: https://www.usenix.org/system/files/nsdi21-wang.pdf
.. _`Ray paper`: https://arxiv.org/abs/1712.05889
.. _`Ray HotOS paper`: https://arxiv.org/abs/1703.03924
.. _`RLlib paper`: https://arxiv.org/abs/1712.09381
.. _`Tune paper`: https://arxiv.org/abs/1807.05118

Getting Involved
----------------

.. list-table::
   :widths: 25 50 25 25
   :header-rows: 1

   * - Platform
     - Purpose
     - Estimated Response Time
     - Support Level
   * - `Discourse Forum`_
     - For discussions about development and questions about usage.
     - < 1 day
     - Community
   * - `GitHub Issues`_
     - For reporting bugs and filing feature requests.
     - < 2 days
     - Ray OSS Team
   * - `Slack`_
     - For collaborating with other Ray users.
     - < 2 days
     - Community
   * - `StackOverflow`_
     - For asking questions about how to use Ray.
     - 3-5 days
     - Community
   * - `Meetup Group`_
     - For learning about Ray projects and best practices.
     - Monthly
     - Ray DevRel
   * - `Twitter`_
     - For staying up-to-date on new features.
     - Daily
     - Ray DevRel

.. _`Discourse Forum`: https://discuss.ray.io/
.. _`GitHub Issues`: https://github.com/ray-project/ray/issues
.. _`StackOverflow`: https://stackoverflow.com/questions/tagged/ray
.. _`Meetup Group`: https://www.meetup.com/Bay-Area-Ray-Meetup/
.. _`Twitter`: https://x.com/raydistributed
.. _`Slack`: https://www.ray.io/join-slack?utm_source=github&utm_medium=ray_readme&utm_campaign=getting_involved

Owner

  • Name: ray-project
  • Login: ray-project
  • Kind: organization

Committers

Last synced: 10 months ago

All Time
  • Total Commits: 24,954
  • Total Committers: 1,151
  • Avg Commits per committer: 21.68
  • Development Distribution Score (DDS): 0.947
Past Year
  • Commits: 3,544
  • Committers: 266
  • Avg Commits per committer: 13.323
  • Development Distribution Score (DDS): 0.913
Top Committers
Name Email Commits
Eric Liang e****g@g****m 1,334
Sven Mika s****7@g****m 1,143
Edward Oakes e****s@g****m 908
Kai Fricke k****e 865
Robert Nishihara r****a@g****m 841
SangBin Cho r****7@g****m 814
Cuong Nguyen 1****e 771
Balaji Veeramani b****i@a****m 609
Philipp Moritz p****z@g****m 607
Richard Liaw r****w@b****u 589
Jiajun Yao j****j@g****m 538
Simon Mo s****o@h****m 509
Lonnie Liu 9****e 501
Stephanie Wang s****g@c****u 463
Amog Kamsetty a****m 450
Yi Cheng 7****g 422
Archit Kulkarni a****i 422
Ian Rodney i****y@g****m 307
Justin Yu j****u@a****m 306
Ricky Xu x****7@h****m 304
Cindy Zhang c****9@g****m 296
Antoni Baum a****m@p****m 289
Chen Shen s****9@g****m 287
dentiny d****o@g****m 287
Hao Chen c****4@g****m 265
Artur Niederfahrenhorst a****r@a****m 257
Clark Zinzow c****w@g****m 256
mehrdadn m****n 238
matthewdeng m****t@a****m 230
shrekris-anyscale 9****e 229
and 1,121 more...

Issues and Pull Requests

Last synced: 6 months ago

All Time
  • Total issues: 7,306
  • Total pull requests: 15,685
  • Average time to close issues: 11 months
  • Average time to close pull requests: 22 days
  • Total issue authors: 2,064
  • Total pull request authors: 775
  • Average comments per issue: 2.89
  • Average comments per pull request: 1.07
  • Merged pull requests: 8,215
  • Bot issues: 0
  • Bot pull requests: 384
Past Year
  • Issues: 2,420
  • Pull requests: 7,641
  • Average time to close issues: 12 days
  • Average time to close pull requests: 7 days
  • Issue authors: 691
  • Pull request authors: 434
  • Average comments per issue: 2.02
  • Average comments per pull request: 0.9
  • Merged pull requests: 3,843
  • Bot issues: 0
  • Bot pull requests: 84
Top Authors
Issue Authors
  • can-anyscale (1,831)
  • rkooo567 (147)
  • stephanie-wang (140)
  • bveeramani (110)
  • edoakes (102)
  • kevin85421 (84)
  • richardliaw (73)
  • rickyyx (73)
  • jjyao (70)
  • scottsun94 (68)
  • GeneDer (65)
  • angelinalg (62)
  • architkulkarni (58)
  • justinvyu (53)
  • MortalHappiness (51)
Pull Request Authors
  • can-anyscale (1,153)
  • aslonnie (936)
  • dentiny (759)
  • sven1977 (643)
  • bveeramani (585)
  • edoakes (566)
  • rynewang (403)
  • kevin85421 (402)
  • zcin (394)
  • dependabot[bot] (384)
  • dayshah (382)
  • jjyao (371)
  • khluu (324)
  • simonsays1980 (289)
  • justinvyu (284)
Top Labels
Issue Labels
bug (4,633) triage (3,340) core (1,882) ray-test-bot (1,619) stability (1,536) enhancement (1,462) weekly-release-blocker (1,372) flaky-tracker (1,193) ci-test (1,096) P1 (1,090) P0 (1,079) P2 (1,065) pending-cleanup (784) data (731) serve (726) release-test (703) rllib (571) docs (438) P3 (365) jailed-test (232) train (226) ml (218) tune (218) release-blocker (187) observability (176) unstable-release-test (165) stale (163) dashboard (147) ray-team-created (133) question (125)
Pull Request Labels
go (6,198) stale (665) core (639) community-contribution (408) dependencies (382) rllib (368) data (364) docs (360) python (337) tests-ok (232) rllib-newstack (197) release-blocker (172) serve (172) triage (168) @author-action-required (134) P1 (130) v2.7.0-pick (125) @external-author-action-required (83) rllib-docs-or-examples (80) P0 (80) P2 (77) bug (62) rllib-oldstack-cleanup (61) train (59) dashboard (56) observability (53) javascript (46) ray 2.10 (45) enhancement (43) do-not-merge (43)

Packages

  • Total packages: 45
  • Total downloads:
    • pypi 15,066,554 last-month
    • cargo 3,691 total
  • Total docker downloads: 21,573,531
  • Total dependent packages: 384
    (may contain duplicates)
  • Total dependent repositories: 3,922
    (may contain duplicates)
  • Total versions: 873
  • Total maintainers: 38
  • Total advisories: 5
pypi.org: ray

Ray provides a simple, universal API for building distributed applications.

  • Versions: 131
  • Dependent Packages: 310
  • Dependent Repositories: 3,641
  • Downloads: 15,039,356 Last month
  • Docker Downloads: 18,763,261
Rankings
Stargazers count: 0.1%
Forks count: 0.1%
Dependent packages count: 0.1%
Dependent repos count: 0.2%
Downloads: 0.2%
Average: 0.2%
Docker downloads count: 0.7%
Last synced: 6 months ago
pypi.org: ray-cpp

A subpackage of Ray which provides the Ray C++ API.

  • Versions: 81
  • Dependent Packages: 2
  • Dependent Repositories: 4
  • Downloads: 16,647 Last month
  • Docker Downloads: 2,791,706
Rankings
Stargazers count: 0.1%
Forks count: 0.1%
Docker downloads count: 0.7%
Downloads: 1.7%
Average: 2.2%
Dependent packages count: 3.2%
Dependent repos count: 7.5%
Last synced: 6 months ago
spack.io: py-ray

Ray provides a simple, universal API for building distributed applications.

  • Versions: 2
  • Dependent Packages: 4
  • Dependent Repositories: 0
Rankings
Dependent repos count: 0.0%
Forks count: 0.3%
Stargazers count: 0.3%
Average: 3.1%
Dependent packages count: 11.6%
Maintainers (1)
Last synced: 6 months ago
repo1.maven.org: io.ray:ray-api

java api for ray

  • Versions: 63
  • Dependent Packages: 4
  • Dependent Repositories: 62
  • Docker Downloads: 167
Rankings
Stargazers count: 0.9%
Forks count: 1.4%
Dependent repos count: 2.7%
Average: 4.8%
Docker downloads count: 4.9%
Dependent packages count: 13.9%
Last synced: 6 months ago
conda-forge.org: ray-core

Ray is a fast and simple framework for building and running distributed applications. It is split into ray-core, ray-default, ray-serve, ray-rllib, ray-client, ray-data, ray-tune, ray-train, ray-observability, ray-adag, ray-cgraph, ray-llm and ray-all packages.

  • Versions: 21
  • Dependent Packages: 21
  • Dependent Repositories: 5
Rankings
Stargazers count: 1.2%
Forks count: 1.4%
Dependent packages count: 3.1%
Average: 5.1%
Dependent repos count: 14.8%
Last synced: 6 months ago
repo1.maven.org: io.ray:ray-runtime

ray runtime implementation

  • Versions: 63
  • Dependent Packages: 3
  • Dependent Repositories: 62
  • Docker Downloads: 167
Rankings
Stargazers count: 0.9%
Forks count: 1.4%
Dependent repos count: 2.7%
Docker downloads count: 4.9%
Average: 5.5%
Dependent packages count: 17.6%
Last synced: 6 months ago
conda-forge.org: ray-default

Ray is a fast and simple framework for building and running distributed applications. It is split into ray-core, ray-default, ray-serve, ray-rllib, ray-client, ray-data, ray-tune, ray-train, ray-observability, ray-adag, ray-cgraph, ray-llm and ray-all packages.

  • Versions: 15
  • Dependent Packages: 11
  • Dependent Repositories: 4
Rankings
Stargazers count: 1.2%
Forks count: 1.4%
Dependent packages count: 5.5%
Average: 6.1%
Dependent repos count: 16.2%
Last synced: 6 months ago
pypi.org: secretflow-ray

Ray provides a simple, universal API for building distributed applications.

  • Versions: 3
  • Dependent Packages: 3
  • Dependent Repositories: 1
  • Downloads: 139 Last month
  • Docker Downloads: 18,150
Rankings
Stargazers count: 0.1%
Forks count: 0.1%
Docker downloads count: 2.0%
Dependent packages count: 3.2%
Average: 6.7%
Downloads: 13.5%
Dependent repos count: 21.5%
Maintainers (1)
Last synced: 6 months ago
conda-forge.org: ray-tune

Ray is a fast and simple framework for building and running distributed applications. It is split into ray-core, ray-default, ray-serve, ray-rllib, ray-client, ray-data, ray-tune, ray-train, ray-observability, ray-adag, ray-cgraph, ray-llm and ray-all packages.

  • Versions: 21
  • Dependent Packages: 4
  • Dependent Repositories: 6
Rankings
Stargazers count: 1.2%
Forks count: 1.4%
Average: 7.3%
Dependent packages count: 12.5%
Dependent repos count: 14.0%
Last synced: 6 months ago
repo1.maven.org: io.ray:streaming-api

ray streaming api

  • Versions: 15
  • Dependent Packages: 1
  • Dependent Repositories: 55
  • Docker Downloads: 40
Rankings
Stargazers count: 0.9%
Forks count: 1.4%
Dependent repos count: 2.9%
Docker downloads count: 5.9%
Average: 8.8%
Dependent packages count: 33.0%
Last synced: 6 months ago
repo1.maven.org: io.ray:streaming-state

ray streaming state

  • Versions: 15
  • Dependent Packages: 1
  • Dependent Repositories: 54
  • Docker Downloads: 40
Rankings
Stargazers count: 0.9%
Forks count: 1.4%
Dependent repos count: 2.9%
Docker downloads count: 5.9%
Average: 8.8%
Dependent packages count: 33.0%
Last synced: 6 months ago
conda-forge.org: ray-all

Ray is a fast and simple framework for building and running distributed applications. It is split into ray-core, ray-default, ray-serve, ray-rllib, ray-client, ray-data, ray-tune, ray-train, ray-observability, ray-adag, ray-cgraph, ray-llm and ray-all packages.

  • Versions: 21
  • Dependent Packages: 3
  • Dependent Repositories: 1
Rankings
Stargazers count: 1.2%
Forks count: 1.4%
Average: 10.7%
Dependent packages count: 15.6%
Dependent repos count: 24.4%
Last synced: 6 months ago
conda-forge.org: ray-dashboard

Ray is a fast and simple framework for building and running distributed applications. It is split into ray-core, ray-default, ray-dashboard, ray-serve, ray-rllib, ray-client, ray-data, ray-tune, ray-train, ray-air, ray-observability and ray-all packages.

  • Versions: 21
  • Dependent Packages: 1
  • Dependent Repositories: 2
Rankings
Stargazers count: 1.3%
Forks count: 1.5%
Average: 13.0%
Dependent repos count: 20.3%
Dependent packages count: 29.0%
Last synced: 6 months ago
pypi.org: fangyu-pypitest

A system for parallel and distributed Python that unifies the ML ecosystem.

  • Versions: 1
  • Dependent Packages: 0
  • Dependent Repositories: 1
  • Downloads: 7 Last month
Rankings
Stargazers count: 0.1%
Forks count: 0.1%
Dependent packages count: 10.1%
Average: 13.4%
Dependent repos count: 21.5%
Downloads: 35.3%
Maintainers (1)
Last synced: 6 months ago
conda-forge.org: ray-serve

Ray is a fast and simple framework for building and running distributed applications. It is split into ray-core, ray-default, ray-serve, ray-rllib, ray-client, ray-data, ray-tune, ray-train, ray-observability, ray-adag, ray-cgraph, ray-llm and ray-all packages.

  • Versions: 21
  • Dependent Packages: 1
  • Dependent Repositories: 1
Rankings
Stargazers count: 1.2%
Forks count: 1.4%
Average: 14.0%
Dependent repos count: 24.4%
Dependent packages count: 29.0%
Last synced: 6 months ago
conda-forge.org: ray-rllib

Ray is a fast and simple framework for building and running distributed applications. It is split into ray-core, ray-default, ray-serve, ray-rllib, ray-client, ray-data, ray-tune, ray-train, ray-observability, ray-adag, ray-cgraph, ray-llm and ray-all packages.

  • Versions: 21
  • Dependent Packages: 1
  • Dependent Repositories: 1
Rankings
Stargazers count: 1.2%
Forks count: 1.4%
Average: 14.0%
Dependent repos count: 24.4%
Dependent packages count: 29.0%
Last synced: 6 months ago
conda-forge.org: ray-data

Ray is a fast and simple framework for building and running distributed applications. It is split into ray-core, ray-default, ray-serve, ray-rllib, ray-client, ray-data, ray-tune, ray-train, ray-observability, ray-adag, ray-cgraph, ray-llm and ray-all packages.

  • Versions: 10
  • Dependent Packages: 1
  • Dependent Repositories: 1
Rankings
Stargazers count: 1.2%
Forks count: 1.4%
Average: 14.0%
Dependent repos count: 24.4%
Dependent packages count: 29.0%
Last synced: 6 months ago
conda-forge.org: ray-k8s

Ray is a fast and simple framework for building and running distributed applications. It is split into ray-core, ray-default, ray-dashboard, ray-serve, ray-rllib, ray-k8s, ray-data, ray-tune, ray-train, ray-air, ray-observability and ray-all packages.

  • Versions: 19
  • Dependent Packages: 1
  • Dependent Repositories: 0
Rankings
Stargazers count: 1.3%
Forks count: 1.5%
Average: 16.4%
Dependent packages count: 28.8%
Dependent repos count: 34.0%
Last synced: 6 months ago
conda-forge.org: ray-autoscaler

Ray is a fast and simple framework for building and running distributed applications.

  • Versions: 2
  • Dependent Packages: 1
  • Dependent Repositories: 0
Rankings
Stargazers count: 1.4%
Forks count: 1.6%
Average: 16.4%
Dependent packages count: 28.8%
Dependent repos count: 34.0%
Last synced: 6 months ago
anaconda.org: ray-core

Ray is a fast and simple framework for building and running distributed applications. It is split into ray-core, ray-default, ray-dashboard, ray-serve, ray-rllib, ray-client, ray-data, ray-tune, ray-train, ray-air, ray-observability and ray-all packages.

  • Homepage: https://www.ray.io/
  • License: Apache-2.0
  • Latest release: 2.46.0
    published 7 months ago
  • Versions: 8
  • Dependent Packages: 3
  • Dependent Repositories: 5
Rankings
Stargazers count: 3.5%
Forks count: 4.9%
Dependent packages count: 15.1%
Average: 16.7%
Dependent repos count: 43.2%
Last synced: 6 months ago
anaconda.org: ray-default

Ray is a fast and simple framework for building and running distributed applications. It is split into ray-core, ray-default, ray-dashboard, ray-serve, ray-rllib, ray-client, ray-data, ray-tune, ray-train, ray-air, ray-observability and ray-all packages.

  • Homepage: https://www.ray.io/
  • License: Apache-2.0
  • Latest release: 2.46.0
    published 7 months ago
  • Versions: 7
  • Dependent Packages: 5
  • Dependent Repositories: 4
Rankings
Stargazers count: 3.5%
Forks count: 4.9%
Dependent packages count: 15.1%
Average: 17.0%
Dependent repos count: 44.7%
Last synced: 6 months ago
anaconda.org: ray-tune

Ray is a fast and simple framework for building and running distributed applications. It is split into ray-core, ray-default, ray-dashboard, ray-serve, ray-rllib, ray-client, ray-data, ray-tune, ray-train, ray-air, ray-observability and ray-all packages.

  • Homepage: https://www.ray.io/
  • License: Apache-2.0
  • Latest release: 2.46.0
    published 7 months ago
  • Versions: 6
  • Dependent Packages: 2
  • Dependent Repositories: 6
Rankings
Stargazers count: 3.3%
Forks count: 4.9%
Average: 17.7%
Dependent packages count: 20.4%
Dependent repos count: 42.2%
Last synced: 6 months ago
pypi.org: ray-for-mars

Ray provides a simple, universal API for building distributed applications.

  • Versions: 2
  • Dependent Packages: 0
  • Dependent Repositories: 1
  • Downloads: 32 Last month
Rankings
Stargazers count: 0.1%
Forks count: 0.1%
Dependent packages count: 10.1%
Average: 18.5%
Dependent repos count: 21.5%
Downloads: 60.5%
Maintainers (1)
Last synced: 6 months ago
crates.io: ray-rs-sys

Low-level bindings to the for the C-ABI Ray CoreWorker (shared library) harness

  • Versions: 1
  • Dependent Packages: 1
  • Dependent Repositories: 0
  • Downloads: 2,227 Total
Rankings
Forks count: 0.1%
Stargazers count: 0.2%
Dependent packages count: 17.0%
Average: 20.2%
Dependent repos count: 29.3%
Downloads: 54.6%
Maintainers (1)
Last synced: 6 months ago
repo1.maven.org: io.ray:ray-serve

java for ray serve

  • Versions: 56
  • Dependent Packages: 0
  • Dependent Repositories: 0
Rankings
Stargazers count: 0.7%
Forks count: 1.1%
Average: 20.7%
Dependent repos count: 32.0%
Dependent packages count: 48.9%
Last synced: 6 months ago
repo1.maven.org: io.ray:ray-streaming

A streaming framework built on ray

  • Versions: 15
  • Dependent Packages: 0
  • Dependent Repositories: 0
Rankings
Stargazers count: 0.7%
Forks count: 1.1%
Average: 20.7%
Dependent repos count: 32.0%
Dependent packages count: 48.9%
Last synced: 6 months ago
repo1.maven.org: io.ray:streaming-runtime

ray streaming runtime

  • Versions: 15
  • Dependent Packages: 0
  • Dependent Repositories: 0
Rankings
Stargazers count: 0.8%
Forks count: 1.2%
Average: 20.7%
Dependent repos count: 32.0%
Dependent packages count: 48.9%
Last synced: 6 months ago
anaconda.org: ray-debug

Ray is a fast and simple framework for building and running distributed applications. It is split into ray-core, ray-default, ray-dashboard, ray-serve, ray-rllib, ray-client, ray-data, ray-tune, ray-train, ray-air, ray-observability and ray-all packages.

  • Homepage: https://www.ray.io/
  • License: Apache-2.0
  • Latest release: 2.46.0
    published 7 months ago
  • Versions: 4
  • Dependent Packages: 0
  • Dependent Repositories: 0
Rankings
Stargazers count: 3.3%
Forks count: 5.1%
Average: 26.5%
Dependent packages count: 39.8%
Dependent repos count: 57.7%
Last synced: 6 months ago
anaconda.org: ray-dashboard

Ray is a fast and simple framework for building and running distributed applications. It is split into ray-core, ray-default, ray-dashboard, ray-serve, ray-rllib, ray-client, ray-data, ray-tune, ray-train, ray-air, ray-observability and ray-all packages.

  • Homepage: https://www.ray.io/
  • License: Apache-2.0
  • Latest release: 2.46.0
    published 7 months ago
  • Versions: 6
  • Dependent Packages: 0
  • Dependent Repositories: 2
Rankings
Stargazers count: 3.3%
Forks count: 4.9%
Average: 27.1%
Dependent repos count: 48.9%
Dependent packages count: 51.2%
Last synced: 6 months ago
anaconda.org: ray-train

Ray is a fast and simple framework for building and running distributed applications. It is split into ray-core, ray-default, ray-dashboard, ray-serve, ray-rllib, ray-client, ray-data, ray-tune, ray-train, ray-air, ray-observability and ray-all packages.

  • Homepage: https://www.ray.io/
  • License: Apache-2.0
  • Latest release: 2.46.0
    published 7 months ago
  • Versions: 4
  • Dependent Packages: 0
  • Dependent Repositories: 1
Rankings
Stargazers count: 3.4%
Forks count: 4.8%
Average: 27.7%
Dependent packages count: 51.2%
Dependent repos count: 51.4%
Last synced: 6 months ago
anaconda.org: ray-rllib

Ray is a fast and simple framework for building and running distributed applications. It is split into ray-core, ray-default, ray-dashboard, ray-serve, ray-rllib, ray-client, ray-data, ray-tune, ray-train, ray-air, ray-observability and ray-all packages.

  • Homepage: https://www.ray.io/
  • License: Apache-2.0
  • Latest release: 2.46.0
    published 7 months ago
  • Versions: 4
  • Dependent Packages: 0
  • Dependent Repositories: 1
Rankings
Stargazers count: 3.4%
Forks count: 4.8%
Average: 27.7%
Dependent packages count: 51.2%
Dependent repos count: 51.4%
Last synced: 6 months ago
anaconda.org: ray-data

Ray is a fast and simple framework for building and running distributed applications. It is split into ray-core, ray-default, ray-dashboard, ray-serve, ray-rllib, ray-client, ray-data, ray-tune, ray-train, ray-air, ray-observability and ray-all packages.

  • Homepage: https://www.ray.io/
  • License: Apache-2.0
  • Latest release: 2.46.0
    published 7 months ago
  • Versions: 4
  • Dependent Packages: 0
  • Dependent Repositories: 1
Rankings
Stargazers count: 3.4%
Forks count: 4.8%
Average: 27.7%
Dependent packages count: 51.2%
Dependent repos count: 51.4%
Last synced: 6 months ago
pypi.org: ant-ray-cpp-nightly

A subpackage of Ray which provides the Ray C++ API.

  • Versions: 19
  • Dependent Packages: 0
  • Dependent Repositories: 0
  • Downloads: 4,801 Last month
Rankings
Dependent packages count: 8.7%
Average: 29.0%
Dependent repos count: 49.3%
Maintainers (1)
Last synced: 6 months ago
pypi.org: ant-ray-cpp

A subpackage of Ray which provides the Ray C++ API.

  • Versions: 1
  • Dependent Packages: 0
  • Dependent Repositories: 0
  • Downloads: 16 Last month
Rankings
Dependent packages count: 8.7%
Average: 29.0%
Dependent repos count: 49.3%
Maintainers (1)
Last synced: 6 months ago
crates.io: ray-rs

Ray Rust language worker API

  • Versions: 1
  • Dependent Packages: 0
  • Dependent Repositories: 0
  • Downloads: 1,464 Total
Rankings
Forks count: 0.1%
Stargazers count: 0.2%
Average: 29.1%
Dependent repos count: 29.3%
Dependent packages count: 33.8%
Downloads: 82.1%
Maintainers (1)
Last synced: 6 months ago
pypi.org: ve-ray

Ray provides a simple, universal API for building distributed applications.

  • Versions: 3
  • Dependent Packages: 0
  • Dependent Repositories: 0
  • Downloads: 44 Last month
Rankings
Dependent packages count: 9.0%
Average: 29.9%
Dependent repos count: 50.8%
Maintainers (2)
Last synced: 6 months ago
pypi.org: ant-ray

Ray provides a simple, universal API for building distributed applications.

  • Versions: 14
  • Dependent Packages: 0
  • Dependent Repositories: 0
  • Downloads: 656 Last month
Rankings
Dependent packages count: 9.8%
Average: 32.6%
Dependent repos count: 55.4%
Last synced: 6 months ago
pypi.org: ant-ray-nightly

Ray provides a simple, universal API for building distributed applications.

  • Versions: 83
  • Dependent Packages: 0
  • Dependent Repositories: 0
  • Downloads: 4,856 Last month
Rankings
Dependent packages count: 9.9%
Average: 32.7%
Dependent repos count: 55.5%
Last synced: 6 months ago
pypi.org: ray-nightly

Ray provides a simple, universal API for building distributed applications.

  • Versions: 1
  • Dependent Packages: 0
  • Dependent Repositories: 0
Rankings
Dependent packages count: 9.9%
Average: 32.7%
Dependent repos count: 55.6%
Maintainers (1)
Last synced: 6 months ago
repo1.maven.org: io.ray:ray-superpom

An open source framework that provides a simple, universal API for building distributed applications.

  • Versions: 63
  • Dependent Packages: 0
  • Dependent Repositories: 0
Rankings
Dependent repos count: 32.0%
Average: 40.4%
Dependent packages count: 48.9%
Last synced: 6 months ago
anaconda.org: ray-client

Ray is a fast and simple framework for building and running distributed applications. It is split into ray-core, ray-default, ray-dashboard, ray-serve, ray-rllib, ray-client, ray-data, ray-tune, ray-train, ray-air, ray-observability and ray-all packages.

  • Homepage: https://www.ray.io/
  • License: Apache-2.0
  • Latest release: 2.46.0
    published 7 months ago
  • Versions: 2
  • Dependent Packages: 0
  • Dependent Repositories: 0
Rankings
Dependent packages count: 46.7%
Average: 49.0%
Dependent repos count: 51.3%
Last synced: 6 months ago
anaconda.org: ray-serve-grpc

Ray is a fast and simple framework for building and running distributed applications. It is split into ray-core, ray-default, ray-dashboard, ray-serve, ray-rllib, ray-client, ray-data, ray-tune, ray-train, ray-air, ray-observability and ray-all packages.

  • Homepage: https://www.ray.io/
  • License: Apache-2.0
  • Latest release: 2.46.0
    published 7 months ago
  • Versions: 2
  • Dependent Packages: 0
  • Dependent Repositories: 0
Rankings
Dependent packages count: 46.7%
Average: 49.0%
Dependent repos count: 51.3%
Last synced: 6 months ago
anaconda.org: ray-observability

Ray is a fast and simple framework for building and running distributed applications. It is split into ray-core, ray-default, ray-dashboard, ray-serve, ray-rllib, ray-client, ray-data, ray-tune, ray-train, ray-air, ray-observability and ray-all packages.

  • Homepage: https://www.ray.io/
  • License: Apache-2.0
  • Latest release: 2.46.0
    published 7 months ago
  • Versions: 2
  • Dependent Packages: 0
  • Dependent Repositories: 0
Rankings
Dependent packages count: 46.7%
Average: 49.0%
Dependent repos count: 51.3%
Last synced: 6 months ago
anaconda.org: ray-air

Ray is a fast and simple framework for building and running distributed applications. It is split into ray-core, ray-default, ray-dashboard, ray-serve, ray-rllib, ray-client, ray-data, ray-tune, ray-train, ray-air, ray-observability and ray-all packages.

  • Homepage: https://www.ray.io/
  • License: Apache-2.0
  • Latest release: 2.46.0
    published 7 months ago
  • Versions: 2
  • Dependent Packages: 0
  • Dependent Repositories: 0
Rankings
Dependent packages count: 46.7%
Average: 49.0%
Dependent repos count: 51.3%
Last synced: 6 months ago
anaconda.org: ray-serve

Ray is a fast and simple framework for building and running distributed applications. It is split into ray-core, ray-default, ray-dashboard, ray-serve, ray-rllib, ray-client, ray-data, ray-tune, ray-train, ray-air, ray-observability and ray-all packages.

  • Homepage: https://www.ray.io/
  • License: Apache-2.0
  • Latest release: 2.46.0
    published 7 months ago
  • Versions: 2
  • Dependent Packages: 0
  • Dependent Repositories: 0
Rankings
Dependent packages count: 46.7%
Average: 49.0%
Dependent repos count: 51.3%
Last synced: 6 months ago

Dependencies

.vale/styles/Google/meta.json cpan
doc/source/templates/05_dreambooth_finetuning/configs/Dockerfile docker
  • anyscale/ray latest-py39-cu118 build
doc/source/templates/testing/docker/03_serving_stable_diffusion/Dockerfile docker
  • anyscale/ray latest-py39-cu118 build
doc/source/templates/testing/docker/04_finetuning_llms_with_deepspeed/Dockerfile docker
  • anyscale/ray 2.6.1-py39-cu117 build
docker/base-deps/Dockerfile docker
  • ${BASE_IMAGE} latest build
docker/development/Dockerfile docker
  • rayproject/ray-deps latest build
docker/examples/Dockerfile docker
  • rayproject/ray latest build
docker/ray/Dockerfile docker
  • $FULL_BASE_IMAGE latest build
docker/ray-deps/Dockerfile docker
  • rayproject/base-deps nightly"$BASE_IMAGE" build
docker/ray-ml/Dockerfile docker
  • "$FULL_BASE_IMAGE" latest build
docker/ray-worker-container/Dockerfile docker
  • ${BASE_IMAGE} latest build
python/ray/tests/kuberay/Dockerfile docker
  • rayproject/ray nightly-py310 build
python/ray/tests/project_files/docker_project/Dockerfile docker
src/ray/rpc/test/grpc_bench/Dockerfile docker
  • ubuntu 22.04 build
java/pom.xml maven
  • org.testng:testng 7.5.1
dashboard/client/package-lock.json npm
  • 1460 dependencies
release/ray_release/byod/requirements_byod_3.9.in pypi
release/ray_release/byod/requirements_byod_3.9.txt pypi
dashboard/client/package.json npm
  • @testing-library/jest-dom ^5.16.5 development
  • @testing-library/react ^12.1.5 development
  • @testing-library/user-event ^14.4.3 development
  • @types/js-yaml ^4.0.5 development
  • @types/react ^17.0.50 development
  • @types/react-dom ^17.0.17 development
  • @typescript-eslint/eslint-plugin ^5.41.0 development
  • @typescript-eslint/parser ^5.41.0 development
  • eslint-plugin-import ^2.26.0 development
  • eslint-plugin-prefer-arrow ^1.2.3 development
  • mockdate ^3.0.5 development
  • npm ^8.19.2 development
  • prettier 2.3.0 development
  • @material-ui/core ^4.12.4
  • @material-ui/icons ^4.11.3
  • @material-ui/lab ^4.0.0-alpha.61
  • @material-ui/pickers ^3.2.10
  • @material-ui/styles ^4.11.5
  • @reduxjs/toolkit ^1.3.1
  • @types/classnames ^2.2.10
  • @types/jest ^27.5.2
  • @types/lodash ^4.14.161
  • @types/lowlight ^0.0.1
  • @types/node 13.9.5
  • @types/numeral ^0.0.26
  • @types/react-redux ^7.1.7
  • @types/react-window ^1.8.2
  • axios ^0.21.1
  • classnames ^2.2.6
  • copy-to-clipboard ^3.3.2
  • dayjs ^1.9.4
  • js-yaml ^4.1.0
  • lodash ^4.17.20
  • lowlight ^1.14.0
  • react ^17.0.2
  • react-dom ^17.0.2
  • react-icons ^4.7.1
  • react-router-dom ^6.4.3
  • react-scripts ^5.0.1
  • react-window ^1.8.5
  • swr ^2.1.0
  • typeface-roboto 0.0.75
  • typescript ^4.8.4
binder/requirements.txt pypi
  • ray *
ci/compile_py_proto/requirements_compile_py_proto.in pypi
  • grpcio-tools ==1.46.5
  • setuptools *
ci/compile_py_proto/requirements_compile_py_proto.txt pypi
  • grpcio ==1.57.0
  • grpcio-tools ==1.46.5
  • protobuf ==3.20.3
  • setuptools ==68.0.0
ci/ray_ci/requirements.in pypi
  • click *
  • pytest *
  • pyyaml *
ci/ray_ci/requirements.txt pypi
  • click ==8.1.6
  • exceptiongroup ==1.1.2
  • iniconfig ==2.0.0
  • packaging ==23.1
  • pluggy ==1.2.0
  • pytest ==7.4.0
  • pyyaml ==6.0.1
  • tomli ==2.0.1
ci/repro-ci-requirements.txt pypi
  • boto3 *
  • click *
  • paramiko *
  • pybuildkite *
  • pyyaml *
doc/requirements-doc.txt pypi
  • Pygments ==2.13.0
  • autodoc_pydantic ==1.6.1
  • jupytext ==1.13.6
  • myst-nb ==0.13.1
  • myst-parser ==0.15.2
  • pydantic <2
  • sphinx ==4.3.2
  • sphinx-book-theme ==0.3.3
  • sphinx-click ==3.0.2
  • sphinx-copybutton ==0.4.0
  • sphinx-external-toc ==0.2.4
  • sphinx-jsonschema ==1.17.2
  • sphinx-remove-toctrees ==0.0.3
  • sphinx-sitemap ==2.2.0
  • sphinx-tabs ==3.4.0
  • sphinx-version-warning ==1.1.2
  • sphinx_design ==0.4.1
  • sphinxcontrib-redoc ==1.6.0
  • sphinxemoji ==0.2.0
  • urllib3 <1.27
  • watchfiles *
doc/source/ray-core/examples/lbfgs/ray-project/requirements.txt pypi
  • ray *
doc/source/templates/02_many_model_training/requirements.txt pypi
  • statsforecast ==1.5.0
doc/source/templates/05_dreambooth_finetuning/dreambooth/requirements.txt pypi
  • accelerate ==0.20.3
  • bitsandbytes ==0.39.1
  • diffusers ==0.19.3
  • flax ==0.6.11
  • huggingface_hub ==0.16.2
  • ipywidgets *
  • numpy ==1.24.4
  • torch ==2.0.1
  • torchvision ==0.15.2
  • transformers ==4.30.2
doc/source/templates/testing/docker/03_serving_stable_diffusion/requirements.txt pypi
  • accelerate ==0.20.3 test
  • diffusers ==0.17.1 test
  • fastapi ==0.97.0 test
  • ipywidgets * test
  • matplotlib ==3.7.1 test
  • numpy ==1.24.3 test
  • torch ==2.0.1 test
  • transformers ==4.30.1 test
doc/source/templates/testing/docker/04_finetuning_llms_with_deepspeed/requirements.txt pypi
  • accelerate * test
  • bitsandbytes * test
  • dataset * test
  • deepspeed * test
  • evaluate * test
  • fairscale * test
  • lm_eval ==0.3.0 test
  • protobuf <3.21.0 test
  • pytorch-lightning * test
  • sentencepiece * test
  • tiktoken ==0.1.2 test
  • torch ==2.0.0 test
  • torchaudio ==2.0.1 test
  • torchmetrics * test
  • torchvision ==0.15.1 test
  • transformers >=4.31.0 test
  • wandb * test
python/ray/tests/project_files/project1/requirements.txt pypi
python/ray/tests/project_files/requirements_project/requirements.txt pypi
python/ray/tests/project_files/session-tests/git-repo-pass/ray-project/requirements.txt pypi
  • ray * test
python/ray/tests/project_files/session-tests/invalid-config-fail/ray-project/requirements.txt pypi
  • ray * test
python/ray/tests/project_files/session-tests/project-pass/ray-project/requirements.txt pypi
  • ray * test
python/ray/tune/requirements-dev.txt pypi
  • black ==22.10.0 development
  • flake8 ==3.9.1 development
  • flake8-quotes * development
  • gym >=0.21.0,<0.24.0 development
  • pandas * development
  • requests * development
  • scikit-image * development
  • tensorflow * development
  • yq * development
python/ray/util/collective/requirements.txt pypi
  • cupy-cuda100 *
python/requirements/compat/requirements_legacy_compat.txt pypi
  • keras ==2.7.0
  • lightgbm_ray ==0.1.9
  • pyarrow ==6.0.1
  • pytorch-lightning ==1.5.10
  • ray *
  • tensorflow ==2.7.0
  • tensorflow-probability ==0.14.1
  • torch ==1.9.0
  • torchvision ==0.10.0
  • xgboost_ray ==0.1.18
python/requirements/docker/ray-docker-requirements.txt pypi
  • gsutil *
  • ipython *
  • ipywidgets *
  • tblib *
python/requirements/lint-requirements.txt pypi
  • black ==22.10.0
  • clang-format ==12.0.1
  • docutils *
  • flake8 ==3.9.1
  • flake8-bugbear ==21.9.2
  • flake8-comprehensions ==3.10.1
  • flake8-quotes ==2.0.0
  • isort ==5.10.1
  • mypy ==0.982
  • semgrep ==1.32.0
  • shellcheck-py ==0.7.1.1
  • types-PyYAML ==6.0.12.2
  • yq *
python/requirements/ml/core-requirements.txt pypi
  • accelerate ==0.20.3
  • comet-ml ==3.31.9
  • lightgbm ==3.3.5
  • lightgbm_ray ==0.1.9
  • mlflow ==1.30.0
  • mlflow ==2.4.1
  • s3fs ==2023.1.0
  • s3fs ==2023.5.0
  • transformers ==4.19.1
  • wandb ==0.13.4
  • xgboost ==1.7.6
  • xgboost ==1.6.2
  • xgboost_ray ==0.1.18
python/requirements/ml/data-requirements.txt pypi
  • aioboto3 ==11.0.1
  • aioboto3 ==11.2.0
  • crc32c ==2.3
  • dask ==2022.10.1
  • dask ==2022.2.0
  • flask_cors *
  • modin ==0.12.1
  • modin ==0.22.2
  • pymars >=0.8.3
  • raydp >=0.0.dev0
  • responses ==0.13.4
python/requirements/ml/data-test-requirements.txt pypi
  • datasets * test
  • google-cloud-bigquery * test
  • google-cloud-bigquery-storage * test
  • pickle5 * test
  • pytest-repeat * test
  • python-snappy * test
  • soundfile * test
  • tensorflow-datasets * test
python/requirements/ml/dl-cpu-requirements.txt pypi
  • tensorflow ==2.11.0
  • tensorflow-datasets *
  • tensorflow-macos ==2.11.0
  • tensorflow-probability ==0.19.0
  • torch ==1.13.0
  • torch ==2.0.1
  • torch-cluster ==1.6.1
  • torch-geometric ==2.3.1
  • torch-scatter ==2.1.1
  • torch-sparse ==0.6.17
  • torch-spline-conv ==1.2.2
  • torchmetrics ==0.9.3
  • torchmetrics ==0.10.3
  • torchtext ==0.15.2
  • torchtext ==0.14.0
  • torchvision ==0.15.2
  • torchvision ==0.14.0
python/requirements/ml/dl-gpu-requirements.txt pypi
  • tensorflow ==2.11.0
  • tensorflow-datasets *
  • tensorflow-macos ==2.11.0
  • tensorflow-probability ==0.19.0
  • torch ==2.0.1
  • torch-cluster ==1.6.1
  • torch-scatter ==2.1.1
  • torch-sparse ==0.6.17
  • torch-spline-conv ==1.2.2
  • torchvision ==0.15.2
python/requirements/ml/rllib-requirements.txt pypi
  • higher ==0.2.1
  • imageio-ffmpeg ==0.4.5
  • msgpack *
  • msgpack_numpy *
  • onnx ==1.12.0
  • onnxruntime ==1.14.1
  • pyglet ==1.5.15
  • rich ==12.6.0
  • tf2onnx ==1.13.0
python/requirements/ml/rllib-test-requirements.txt pypi
  • ale_py ==0.8.1 test
  • autorom * test
  • chess ==1.7.0 test
  • dm_control ==1.0.12 test
  • dopamine-rl ==4.0.5 test
  • gymnasium ==0.28.1 test
  • h5py ==3.7.0 test
  • imageio ==2.31.1 test
  • kaggle_environments ==1.7.11 test
  • minigrid ==2.1.1 test
  • mlagents_envs ==0.28.0 test
  • mujoco ==2.3.6 test
  • open-spiel ==1.2 test
  • pettingzoo ==1.23.1 test
  • pymunk ==6.2.1 test
  • recsim ==0.2.4 test
  • shimmy * test
  • supersuit ==3.8.0 test
  • tensorflow_estimator ==2.11.0 test
  • tinyscaler ==1.2.6 test
python/requirements/ml/train-requirements.txt pypi
  • datasets ==2.0.0
  • deepspeed ==0.8.3
python/requirements/ml/train-test-requirements.txt pypi
  • evaluate ==0.4.0 test
  • sentencepiece ==0.1.96 test
python/requirements/ml/tune-requirements.txt pypi
  • ConfigSpace ==0.7.1
  • ax-platform ==0.3.2
  • ax-platform ==0.2.6
  • bayesian-optimization ==1.4.3
  • dragonfly-opt ==0.1.7
  • flaml ==1.1.1
  • hpbandster ==0.7.4
  • hyperopt ==0.2.7
  • nevergrad ==0.4.3.post7
  • optuna ==3.2.0
  • tune-sklearn ==0.4.6
python/requirements/ml/tune-test-requirements.txt pypi
  • aim ==3.17.5 test
  • fairscale ==0.4.6 test
  • gpy ==1.10.0 test
  • jupyterlab ==3.6.1 test
  • matplotlib * test
  • pytest-remotedata ==0.3.2 test
  • pytorch-lightning ==1.6.5 test
  • scikit-optimize ==0.9.0 test
  • shortuuid ==1.0.1 test
  • sigopt ==7.5.0 test
  • timm ==0.9.2 test
  • zoopt ==0.4.1 test
python/requirements/test-requirements.txt pypi
  • Pillow ==9.2.0 test
  • PyOpenSSL ==22.1.0 test
  • Pygments ==2.13.0 test
  • async-exit-stack ==1.0.1 test
  • async-generator ==1.10 test
  • asyncmock ==0.4.2 test
  • attrs ==21.4.0 test
  • azure-cli-core ==2.40.0 test
  • azure-identity ==1.10.0 test
  • azure-mgmt-compute ==23.1.0 test
  • azure-mgmt-network ==19.0.0 test
  • azure-mgmt-resource ==20.0.0 test
  • backoff ==1.10 test
  • beautifulsoup4 ==4.11.1 test
  • boto3 ==1.24.59 test
  • boto3 ==1.26.76 test
  • cloudpickle ==2.2.0 test
  • cryptography ==38.0.1 test
  • cython ==0.29.32 test
  • dataclasses * test
  • fastapi ==0.99.1 test
  • feather-format ==0.4.1 test
  • flask ==2.1.3 test
  • freezegun ==1.1.0 test
  • google-api-python-client ==2.65.0 test
  • google-cloud-storage ==2.5.0 test
  • gradio ==3.11 test
  • h11 ==0.12.0 test
  • httpcore ==0.15.0 test
  • importlib-metadata ==4.10.0 test
  • jinja2 ==3.0.3 test
  • joblib ==1.2.0 test
  • jsonpatch ==1.32 test
  • jupytext ==1.13.6 test
  • kubernetes ==24.2.0 test
  • llvmlite ==0.39.1 test
  • lxml ==4.9.1 test
  • markdown-it-py ==1.1.0 test
  • memray * test
  • moto ==4.0.7 test
  • msrestazure ==0.6.4 test
  • mypy ==0.982 test
  • myst-nb ==0.13.1 test
  • myst-parser ==0.15.2 test
  • networkx ==2.6.3 test
  • numba ==0.56.4 test
  • numexpr ==2.8.4 test
  • openpyxl ==3.0.10 test
  • opentelemetry-api ==1.1.0 test
  • opentelemetry-exporter-opencensus ==0.20b0 test
  • opentelemetry-exporter-otlp ==1.1.0 test
  • opentelemetry-sdk ==1.1.0 test
  • pexpect ==4.8.0 test
  • polars ==0.14.21 test
  • proxy.py ==2.4.3 test
  • pydantic ==1.10.12 test
  • pydot ==1.4.2 test
  • pygame ==2.1.2 test
  • pymongo ==4.3.2 test
  • pyspark ==3.3.1 test
  • pytest ==7.0.1 test
  • pytest-asyncio ==0.16.0 test
  • pytest-docker-tools ==3.1.3 test
  • pytest-forked ==1.4.0 test
  • pytest-httpserver ==1.0.6 test
  • pytest-lazy-fixture ==0.6.3 test
  • pytest-rerunfailures ==11.1.2 test
  • pytest-sugar ==0.9.5 test
  • pytest-timeout ==2.1.0 test
  • pytest-virtualenv ==1.7.0 test
  • pytz ==2022.7.1 test
  • redis ==4.4.2 test
  • scikit-learn ==1.0.2 test
  • segment-analytics-python ==2.2.0 test
  • smart_open ==6.2.0 test
  • sphinx ==4.3.2 test
  • starlette ==0.27.0 test
  • sympy ==1.10.1 test
  • tensorboardX ==2.6.0 test
  • testfixtures ==7.0.0 test
  • threadpoolctl ==3.1.0 test
  • tqdm ==4.64.1 test
  • trustme ==0.9.0 test
  • typing-extensions ==4.5.0 test
  • uvicorn ==0.22.0 test
  • watchfiles ==0.19.0 test
  • websockets ==11.0.3 test
  • werkzeug ==2.1.2 test
  • xlrd ==2.0.1 test
  • yq ==3.2.2 test
python/requirements.txt pypi
  • aiohttp >=3.7
  • aiohttp_cors *
  • aiorwlock *
  • aiosignal *
  • click >=7.0
  • colorful *
  • dataclasses *
  • dm_tree *
  • fastapi *
  • filelock *
  • frozenlist *
  • fsspec *
  • gpustat >=1.0.0
  • grpcio ==1.54.2
  • grpcio >=1.54.2
  • gymnasium ==0.28.1
  • jsonschema *
  • lz4 *
  • msgpack <2.0.0,>=1.0.0
  • numpy >=1.16
  • numpy >=1.19.3
  • numpy >=1.20
  • opencensus *
  • opentelemetry-api *
  • opentelemetry-exporter-otlp *
  • opentelemetry-sdk *
  • packaging *
  • pandas *
  • pandas >=1.3
  • prometheus_client >=0.7.1
  • protobuf *
  • py-spy >=0.2.0
  • pyarrow >=6.0.1,<7.0.0
  • pyarrow >=6.0.1
  • pydantic <2
  • pyyaml *
  • requests *
  • rich *
  • scikit-image *
  • scipy *
  • smart_open *
  • starlette *
  • tensorboardX <=2.6.0,>=1.9
  • typer *
  • typing_extensions *
  • uvicorn *
  • virtualenv <20.21.1,>=20.0.24
  • watchfiles *
python/requirements_compiled.txt pypi
  • about-time ==4.2.1
  • absl-py ==1.4.0
  • accelerate ==0.20.3
  • adal ==1.2.7
  • aim ==3.17.5
  • aim-ui ==3.17.5
  • aimrecords ==0.0.7
  • aimrocks ==0.4.0
  • aioboto3 ==11.2.0
  • aiobotocore ==2.5.0
  • aiofiles ==22.1.0
  • aiohttp ==3.8.5
  • aiohttp-cors ==0.7.0
  • aioitertools ==0.11.0
  • aiorwlock ==1.3.0
  • aiosignal ==1.3.1
  • aiosqlite ==0.19.0
  • alabaster ==0.7.13
  • ale-py ==0.8.1
  • alembic ==1.12.0
  • alive-progress ==3.1.4
  • anyio ==3.7.1
  • applicationinsights ==0.11.10
  • argcomplete ==1.12.3
  • argon2-cffi ==23.1.0
  • argon2-cffi-bindings ==21.2.0
  • array-record ==0.4.0
  • arrow ==1.3.0
  • asttokens ==2.4.0
  • astunparse ==1.6.3
  • async-exit-stack ==1.0.1
  • async-generator ==1.10
  • async-timeout ==4.0.3
  • asyncmock ==0.4.2
  • attrs ==21.4.0
  • autodoc-pydantic ==1.6.1
  • autograd ==1.6.2
  • autorom ==0.6.1
  • autorom-accept-rom-license ==0.6.1
  • aws-sam-translator ==1.76.0
  • aws-xray-sdk ==2.12.0
  • ax-platform ==0.3.2
  • azure-cli-core ==2.40.0
  • azure-cli-telemetry ==1.0.8
  • azure-common ==1.1.28
  • azure-core ==1.29.1
  • azure-identity ==1.10.0
  • azure-mgmt-compute ==23.1.0
  • azure-mgmt-core ==1.4.0
  • azure-mgmt-network ==19.0.0
  • azure-mgmt-resource ==20.0.0
  • babel ==2.13.0
  • backcall ==0.2.0
  • backoff ==1.10.0
  • base58 ==2.0.1
  • bayesian-optimization ==1.4.3
  • bcrypt ==4.0.1
  • beautifulsoup4 ==4.11.1
  • black ==22.10.0
  • bleach ==6.0.0
  • blessed ==1.20.0
  • bokeh ==2.4.3
  • boltons ==21.0.0
  • boto ==2.49.0
  • boto3 ==1.26.76
  • botocore ==1.29.76
  • botorch ==0.8.5
  • bracex ==2.4
  • cached-property ==1.5.2
  • cachetools ==5.3.1
  • catboost ==1.2.2
  • certifi ==2023.7.22
  • cffi ==1.16.0
  • cfn-lint ==0.80.4
  • charset-normalizer ==3.3.0
  • chess ==1.7.0
  • chex ==0.1.7
  • clang-format ==12.0.1
  • click ==8.1.7
  • click-option-group ==0.5.6
  • cloudpickle ==2.2.0
  • cma ==3.2.2
  • cmaes ==0.10.0
  • colorama ==0.4.6
  • coloredlogs ==15.0.1
  • colorful ==0.5.5
  • colorlog ==6.7.0
  • comet-ml ==3.31.9
  • comm ==0.1.4
  • commonmark ==0.9.1
  • configobj ==5.0.8
  • configspace ==0.7.1
  • contextlib2 ==21.6.0
  • contourpy ==1.1.1
  • crc32c ==2.3
  • crcmod ==1.7
  • cryptography ==38.0.1
  • cycler ==0.12.0
  • cython ==0.29.32
  • dask ==2022.10.1
  • databricks-cli ==0.18.0
  • datasets ==2.0.0
  • debugpy ==1.8.0
  • decorator ==5.1.1
  • deepspeed ==0.8.3
  • defusedxml ==0.7.1
  • deprecated ==1.2.14
  • dill ==0.3.7
  • distlib ==0.3.7
  • distributed ==2022.10.1
  • dm-control ==1.0.12
  • dm-env ==1.6
  • dm-tree ==0.1.8
  • dnspython ==2.4.2
  • docker ==6.1.3
  • docker-pycreds ==0.4.0
  • docutils ==0.17.1
  • dopamine-rl ==4.0.5
  • dragonfly-opt ==0.1.7
  • dulwich ==0.21.6
  • ecdsa ==0.18.0
  • email-validator ==2.0.0.post2
  • entrypoints ==0.4
  • et-xmlfile ==1.1.0
  • etils ==1.3.0
  • evaluate ==0.4.0
  • everett ==3.2.0
  • exceptiongroup ==1.1.3
  • execnet ==2.0.2
  • executing ==2.0.0
  • face ==22.0.0
  • fairscale ==0.4.6
  • farama-notifications ==0.0.4
  • fastapi ==0.99.1
  • fasteners ==0.19
  • fastjsonschema ==2.18.1
  • feather-format ==0.4.1
  • ffmpy ==0.3.1
  • filelock ==3.12.4
  • flake8 ==3.9.1
  • flake8-bugbear ==21.9.2
  • flake8-comprehensions ==3.10.1
  • flake8-quotes ==2.0.0
  • flaml ==1.1.1
  • flask ==2.1.3
  • flask-cors ==4.0.0
  • flatbuffers ==2.0.7
  • flax ==0.7.2
  • fonttools ==4.43.0
  • fqdn ==1.5.1
  • freezegun ==1.1.0
  • frozenlist ==1.4.0
  • fsspec ==2023.5.0
  • future ==0.18.3
  • gast ==0.4.0
  • gcs-oauth2-boto-plugin ==3.0
  • gin-config ==0.5.0
  • gitdb ==4.0.10
  • gitpython ==3.1.37
  • glfw ==2.6.2
  • glom ==22.1.0
  • google-api-core ==2.12.0
  • google-api-python-client ==2.65.0
  • google-apitools ==0.5.32
  • google-auth ==2.23.2
  • google-auth-httplib2 ==0.1.1
  • google-auth-oauthlib ==0.4.6
  • google-cloud-bigquery ==3.11.0
  • google-cloud-bigquery-storage ==2.20.0
  • google-cloud-core ==2.3.3
  • google-cloud-storage ==2.5.0
  • google-crc32c ==1.5.0
  • google-pasta ==0.2.0
  • google-reauth ==0.1.1
  • google-resumable-media ==2.6.0
  • googleapis-common-protos ==1.60.0
  • gpustat ==1.1.1
  • gpy ==1.10.0
  • gpytorch ==1.10
  • gradio ==3.11.0
  • grapheme ==0.6.0
  • graphql-core ==3.2.3
  • graphviz ==0.20.1
  • greenlet ==3.0.0
  • grpcio ==1.59.0
  • grpcio-status ==1.48.2
  • gsutil ==5.26
  • gunicorn ==20.1.0
  • gym ==0.26.2
  • gym-notices ==0.0.8
  • gymnasium ==0.28.1
  • h11 ==0.12.0
  • h5py ==3.7.0
  • higher ==0.2.1
  • hjson ==3.1.0
  • hpbandster ==0.7.4
  • httpcore ==0.15.0
  • httplib2 ==0.20.4
  • httptools ==0.6.0
  • httpx ==0.24.1
  • huggingface-hub ==0.17.3
  • humanfriendly ==10.0
  • hyperopt ==0.2.7
  • idna ==3.4
  • imageio ==2.31.1
  • imageio-ffmpeg ==0.4.5
  • imagesize ==1.4.1
  • importlib-metadata ==4.10.0
  • importlib-resources ==5.13.0
  • iniconfig ==2.0.0
  • ipykernel ==6.25.2
  • ipython ==8.12.3
  • ipython-genutils ==0.2.0
  • ipywidgets ==7.8.1
  • isodate ==0.6.1
  • isoduration ==20.11.0
  • isort ==5.10.1
  • itsdangerous ==2.1.2
  • jax ==0.4.13
  • jax-jumpy ==1.0.0
  • jaxlib ==0.4.13
  • jedi ==0.19.1
  • jinja2 ==3.0.3
  • jmespath ==1.0.1
  • joblib ==1.2.0
  • jschema-to-python ==1.2.3
  • json5 ==0.9.14
  • jsondiff ==2.0.0
  • jsonpatch ==1.32
  • jsonpickle ==3.0.2
  • jsonpointer ==2.4
  • jsonschema ==4.17.3
  • jsonschema-spec ==0.1.6
  • junit-xml ==1.9
  • jupyter-cache ==0.4.3
  • jupyter-client ==7.3.4
  • jupyter-core ==5.3.2
  • jupyter-events ==0.6.3
  • jupyter-server ==1.24.0
  • jupyter-server-fileid ==0.9.0
  • jupyter-server-mathjax ==0.2.6
  • jupyter-server-ydoc ==0.6.1
  • jupyter-sphinx ==0.3.2
  • jupyter-ydoc ==0.2.5
  • jupyterlab ==3.6.1
  • jupyterlab-pygments ==0.2.2
  • jupyterlab-server ==2.24.0
  • jupyterlab-widgets ==1.1.7
  • jupytext ==1.13.6
  • kaggle-environments ==1.7.11
  • keras ==2.11.0
  • kiwisolver ==1.4.5
  • knack ==0.10.1
  • kubernetes ==24.2.0
  • labmaze ==1.0.6
  • lazy-object-proxy ==1.9.0
  • libclang ==16.0.6
  • lightgbm ==3.3.5
  • linear-operator ==0.4.0
  • linkify-it-py ==1.0.3
  • llvmlite ==0.39.1
  • locket ==1.0.0
  • lxml ==4.9.1
  • lz4 ==4.3.2
  • mako ==1.2.4
  • markdown ==3.4.4
  • markdown-it-py ==1.1.0
  • markupsafe ==2.1.3
  • matplotlib ==3.7.3
  • matplotlib-inline ==0.1.6
  • mccabe ==0.6.1
  • mdit-py-plugins ==0.2.8
  • memray ==1.10.0
  • minigrid ==2.1.1
  • mistune ==0.8.4
  • ml-dtypes ==0.2.0
  • mlagents-envs ==0.28.0
  • mlflow ==2.4.1
  • mock ==5.1.0
  • modin ==0.22.2
  • monotonic ==1.6
  • more-itertools ==10.1.0
  • moto ==4.0.7
  • mpmath ==1.3.0
  • msal ==1.18.0b1
  • msal-extensions ==1.0.0
  • msgpack ==1.0.7
  • msgpack-numpy ==0.4.8
  • msrest ==0.7.1
  • msrestazure ==0.6.4
  • mujoco ==2.3.6
  • multidict ==6.0.4
  • multipledispatch ==1.0.0
  • multiprocess ==0.70.15
  • mypy ==0.982
  • mypy-extensions ==1.0.0
  • myst-nb ==0.13.1
  • myst-parser ==0.15.2
  • nbclassic ==1.0.0
  • nbclient ==0.5.13
  • nbconvert ==6.5.4
  • nbdime ==3.2.1
  • nbformat ==5.9.2
  • nest-asyncio ==1.5.8
  • netifaces ==0.11.0
  • networkx ==2.6.3
  • nevergrad ==0.4.3.post7
  • ninja ==1.11.1
  • notebook ==6.5.6
  • notebook-shim ==0.2.3
  • numba ==0.56.4
  • numexpr ==2.8.4
  • numpy ==1.23.5
  • nvidia-ml-py ==12.535.108
  • oauth2client ==4.1.3
  • oauthlib ==3.2.2
  • onnx ==1.12.0
  • onnxruntime ==1.14.1
  • open-spiel ==1.2
  • openapi-schema-validator ==0.4.4
  • openapi-spec-validator ==0.5.7
  • opencensus ==0.11.3
  • opencensus-context ==0.1.3
  • opencensus-proto ==0.1.0
  • opencv-python ==4.8.1.78
  • openpyxl ==3.0.10
  • opentelemetry-api ==1.1.0
  • opentelemetry-exporter-opencensus ==0.20b0
  • opentelemetry-exporter-otlp ==1.1.0
  • opentelemetry-exporter-otlp-proto-grpc ==1.1.0
  • opentelemetry-proto ==1.1.0
  • opentelemetry-sdk ==1.1.0
  • opentelemetry-semantic-conventions ==0.20b0
  • opt-einsum ==3.3.0
  • optax ==0.1.7
  • optuna ==3.2.0
  • orbax-checkpoint ==0.2.3
  • orjson ==3.9.7
  • packaging ==21.3
  • pandas ==1.5.3
  • pandocfilters ==1.5.0
  • paramiko ==2.12.0
  • paramz ==0.9.5
  • parso ==0.8.3
  • partd ==1.4.1
  • path ==16.7.1
  • path-py ==12.5.0
  • pathable ==0.4.3
  • pathspec ==0.11.2
  • pathtools ==0.1.2
  • patsy ==0.5.3
  • pbr ==5.11.1
  • peewee ==3.16.3
  • pettingzoo ==1.23.1
  • pexpect ==4.8.0
  • pickleshare ==0.7.5
  • pillow ==9.2.0
  • pkginfo ==1.9.6
  • pkgutil-resolve-name ==1.3.10
  • platformdirs ==3.11.0
  • plotly ==5.17.0
  • pluggy ==1.3.0
  • polars ==0.14.21
  • portalocker ==2.8.2
  • prometheus-client ==0.17.1
  • promise ==2.3
  • prompt-toolkit ==3.0.39
  • proto-plus ==1.22.3
  • protobuf ==3.19.6
  • proxy-py ==2.4.3
  • psutil ==5.9.5
  • ptyprocess ==0.7.0
  • pure-eval ==0.2.2
  • py ==1.11.0
  • py-cpuinfo ==9.0.0
  • py-spy ==0.3.14
  • py3nvml ==0.2.7
  • py4j ==0.10.9.5
  • pyaml ==23.9.7
  • pyarrow ==12.0.1
  • pyasn1 ==0.5.0
  • pyasn1-modules ==0.3.0
  • pycodestyle ==2.7.0
  • pycparser ==2.21
  • pycryptodome ==3.19.0
  • pydantic ==1.10.12
  • pydata-sphinx-theme ==0.8.1
  • pydeprecate ==0.3.2
  • pydot ==1.4.2
  • pydub ==0.25.1
  • pyflakes ==2.3.1
  • pygame ==2.1.2
  • pyglet ==1.5.15
  • pygments ==2.13.0
  • pyjwt ==2.8.0
  • pymars ==0.10.0
  • pymongo ==4.3.2
  • pymoo ==0.6.0.1
  • pymunk ==6.2.1
  • pynacl ==1.5.0
  • pyopengl ==3.1.7
  • pyopenssl ==22.1.0
  • pyparsing ==3.1.1
  • pypng ==0.20220715.0
  • pyro-api ==0.1.2
  • pyro-ppl ==1.8.6
  • pyro4 ==4.82
  • pyrsistent ==0.19.3
  • pysocks ==1.7.1
  • pyspark ==3.3.1
  • pytest ==7.0.1
  • pytest-asyncio ==0.16.0
  • pytest-docker-tools ==3.1.3
  • pytest-fixture-config ==1.7.0
  • pytest-forked ==1.4.0
  • pytest-httpserver ==1.0.6
  • pytest-lazy-fixture ==0.6.3
  • pytest-remotedata ==0.3.2
  • pytest-repeat ==0.9.2
  • pytest-rerunfailures ==11.1.2
  • pytest-shutil ==1.7.0
  • pytest-sugar ==0.9.5
  • pytest-timeout ==2.1.0
  • pytest-virtualenv ==1.7.0
  • python-dateutil ==2.8.2
  • python-dotenv ==1.0.0
  • python-jose ==3.3.0
  • python-json-logger ==2.0.7
  • python-lsp-jsonrpc ==1.0.0
  • python-multipart ==0.0.6
  • python-snappy ==0.6.1
  • pytorch-lightning ==1.6.5
  • pytz ==2022.7.1
  • pyu2f ==0.1.5
  • pyvmomi ==8.0.2.0
  • pywavelets ==1.4.1
  • pyyaml ==6.0.1
  • pyzmq ==24.0.1
  • querystring-parser ==1.2.4
  • raydp ==1.7.0b20230919.dev0
  • recsim ==0.2.4
  • redis ==4.4.2
  • regex ==2023.10.3
  • requests ==2.31.0
  • requests-oauthlib ==1.3.1
  • requests-toolbelt ==1.0.0
  • responses ==0.13.4
  • restrictedpython ==6.2
  • retry-decorator ==1.1.1
  • rfc3339-validator ==0.1.4
  • rfc3986-validator ==0.1.1
  • rich ==12.6.0
  • rsa ==4.7.2
  • ruamel-yaml ==0.17.35
  • ruamel-yaml-clib ==0.2.8
  • s3fs ==2023.5.0
  • s3transfer ==0.6.2
  • safetensors ==0.3.3
  • sarif-om ==1.0.4
  • scikit-image ==0.19.3
  • scikit-learn ==1.0.2
  • scikit-optimize ==0.9.0
  • scipy ==1.10.1
  • segment-analytics-python ==2.2.0
  • semantic-version ==2.10.0
  • semgrep ==1.32.0
  • send2trash ==1.8.2
  • sentencepiece ==0.1.96
  • sentry-sdk ==1.31.0
  • serpent ==1.41
  • setproctitle ==1.3.3
  • shellcheck-py ==0.7.1.1
  • shimmy ==1.2.1
  • shortuuid ==1.0.1
  • sigopt ==7.5.0
  • six ==1.16.0
  • smart-open ==6.2.0
  • smmap ==5.0.1
  • sniffio ==1.3.0
  • snowballstemmer ==2.2.0
  • sortedcontainers ==2.4.0
  • soundfile ==0.12.1
  • soupsieve ==2.5
  • sphinx ==4.3.2
  • sphinx-book-theme ==0.3.3
  • sphinx-click ==3.0.2
  • sphinx-copybutton ==0.4.0
  • sphinx-design ==0.4.1
  • sphinx-external-toc ==0.2.4
  • sphinx-jsonschema ==1.17.2
  • sphinx-remove-toctrees ==0.0.3
  • sphinx-sitemap ==2.2.0
  • sphinx-tabs ==3.4.0
  • sphinx-togglebutton ==0.2.3
  • sphinx-version-warning ==1.1.2
  • sphinxcontrib-applehelp ==1.0.4
  • sphinxcontrib-devhelp ==1.0.2
  • sphinxcontrib-htmlhelp ==2.0.1
  • sphinxcontrib-jsmath ==1.0.1
  • sphinxcontrib-qthelp ==1.0.3
  • sphinxcontrib-redoc ==1.6.0
  • sphinxcontrib-serializinghtml ==1.1.5
  • sphinxemoji ==0.2.0
  • sqlalchemy ==1.4.17
  • sqlparse ==0.4.4
  • sshpubkeys ==3.3.1
  • stack-data ==0.6.3
  • starlette ==0.27.0
  • statsmodels ==0.14.0
  • supersuit ==3.8.0
  • sympy ==1.12
  • tabulate ==0.9.0
  • tblib ==2.0.0
  • tenacity ==8.2.3
  • tensorboard ==2.11.2
  • tensorboard-data-server ==0.6.1
  • tensorboard-plugin-wit ==1.8.1
  • tensorboardx ==2.6
  • tensorflow ==2.11.0
  • tensorflow-datasets ==4.9.0
  • tensorflow-estimator ==2.11.0
  • tensorflow-io-gcs-filesystem ==0.34.0
  • tensorflow-metadata ==1.13.0
  • tensorflow-probability ==0.19.0
  • tensorstore ==0.1.45
  • termcolor ==2.3.0
  • terminado ==0.17.1
  • testfixtures ==7.0.0
  • tf-slim ==1.1.0
  • tf2onnx ==1.13.0
  • threadpoolctl ==3.1.0
  • tifffile ==2023.7.10
  • timm ==0.9.2
  • tinycss2 ==1.2.1
  • tinyscaler ==1.2.6
  • tokenizers ==0.12.1
  • toml ==0.10.2
  • tomli ==2.0.1
  • tomlkit ==0.12.1
  • toolz ==0.12.0
  • torch ==2.0.1
  • torch-cluster ==1.6.1
  • torch-geometric ==2.3.1
  • torch-scatter ==2.1.1
  • torch-sparse ==0.6.17
  • torch-spline-conv ==1.2.2
  • torchdata ==0.6.1
  • torchmetrics ==0.10.3
  • torchtext ==0.15.2
  • torchvision ==0.15.2
  • tornado ==6.1
  • tqdm ==4.64.1
  • traitlets ==5.11.2
  • transformers ==4.19.1
  • trustme ==0.9.0
  • typeguard ==2.13.3
  • typer ==0.9.0
  • types-python-dateutil ==2.8.19.14
  • types-pyyaml ==6.0.12.2
  • typing-extensions ==4.5.0
  • uc-micro-py ==1.0.2
  • ujson ==5.8.0
  • uri-template ==1.3.0
  • uritemplate ==4.1.1
  • urllib3 ==1.26.17
  • uvicorn ==0.22.0
  • uvloop ==0.17.0
  • virtualenv ==20.21.0
  • wandb ==0.13.4
  • watchfiles ==0.19.0
  • wcmatch ==8.5
  • wcwidth ==0.2.8
  • webcolors ==1.13
  • webencodings ==0.5.1
  • websocket-client ==1.6.3
  • websockets ==11.0.3
  • werkzeug ==2.1.2
  • wheel ==0.41.2
  • widgetsnbextension ==3.6.6
  • wrapt ==1.15.0
  • wurlitzer ==3.0.3
  • xgboost ==1.7.6
  • xlrd ==2.0.1
  • xmltodict ==0.13.0
  • xxhash ==3.4.1
  • y-py ==0.6.2
  • yarl ==1.9.2
  • ypy-websocket ==0.8.4
  • yq ==3.2.2
  • zict ==3.0.0
  • zipp ==3.17.0
  • zoopt ==0.4.1
python/setup.py pypi
  • Light *
  • aiosignal *
  • click *
  • filelock *
  • frozenlist *
  • jsonschema *
  • msgpack *
  • numpy *
  • packaging *
  • protobuf *
  • pyyaml *
  • requests *
  • typing_extensions *
  • we *
release/lightgbm_tests/requirements.txt pypi
  • lightgbm_ray * test
  • ray * test
  • xgboost_ray * test
release/ml_user_tests/horovod/driver_requirements.txt pypi
  • torch * test
  • torchvision * test
release/ml_user_tests/train/driver_requirements.txt pypi
  • tensorflow * test
  • torch * test
release/ml_user_tests/tune_rllib/driver_requirements.txt pypi
  • tblib * test
  • tensorflow * test
  • torch * test
release/ray_release/byod/requirements_byod_3.11.in pypi
release/ray_release/byod/requirements_byod_3.11.txt pypi
release/ray_release/byod/requirements_byod_3.8.in pypi
  • ale-py *
  • anyscale *
  • boto3 *
  • cmake *
  • crc32c *
  • cython *
  • gcsfs *
  • gsutil *
  • gym *
  • importlib-metadata *
  • lightgbm *
  • memray *
  • openskill *
  • petastorm *
  • protobuf *
  • pyarrow *
  • pytest *
  • requests >=2.31.0
  • scikit-learn *
  • scipy *
  • semidbm *
  • tblib *
  • tensorboardX *
  • tensorflow *
  • terminado *
  • tqdm *
  • trueskill *
  • typer *
  • wandb *
  • xarray *
  • xgboost *
  • zarr *
release/ray_release/byod/requirements_byod_3.8.txt pypi
  • 164 dependencies
release/ray_release/byod/requirements_debian_byod.txt pypi
  • apt-transport-https *
  • ca-certificates *
  • curl *
  • gnupg *
  • google-cloud-sdk *
  • htop *
  • libaio1 *
  • libgl1-mesa-glx *
  • libglfw3 *
  • libjemalloc-dev *
  • libosmesa6-dev *
  • patchelf *
  • unzip *
  • zip *
release/ray_release/byod/requirements_ml_byod_3.8.in pypi
  • accelerate *
  • boto3 *
  • cmake *
  • crc32c *
  • cupy-cuda113 *
  • datasets *
  • deepspeed *
  • diffusers *
  • evaluate *
  • fastapi *
  • filelock *
  • gcsfs *
  • gsutil *
  • jupytext *
  • memray *
  • modin *
  • mosaicml-streaming *
  • numpy *
  • openskill *
  • petastorm *
  • pyarrow *
  • pytest *
  • pytorch_lightning *
  • scikit-learn *
  • semidbm *
  • tblib *
  • tensorboardX *
  • torch *
  • torchtext *
  • torchvision *
  • tqdm *
  • transformers *
  • trueskill *
  • typer *
  • typing-extensions *
  • urllib3 *
  • uvicorn *
  • validators *
  • wandb *
  • xgboost *
release/ray_release/byod/requirements_ml_byod_3.8.txt pypi
  • 191 dependencies
release/ray_release/byod/requirements_ml_byod_3.9.in pypi
  • accelerate *
  • bitsandbytes *
  • dataset *
  • datasets *
  • decord *
  • deepspeed *
  • diffusers *
  • evaluate *
  • fairscale *
  • fastapi *
  • ipywidgets *
  • lm_eval *
  • matplotlib *
  • numpy *
  • openai-whisper *
  • protobuf *
  • pytorch-lightning *
  • sentencepiece *
  • statsforecast *
  • tiktoken *
  • torch *
  • torchaudio *
  • torchmetrics *
  • torchtext *
  • torchvision *
  • transformers >=4.31.0
  • typepy >=1.3.2
  • wandb *
release/ray_release/byod/requirements_ml_byod_3.9.txt pypi
  • 196 dependencies
release/requirements.txt pypi
  • PyGithub *
  • anyscale *
  • boto3 *
  • click *
  • expiringdict *
  • google-cloud-storage *
  • jinja2 *
  • kubernetes *
  • protobuf >=3.15.3,
  • pybuildkite *
  • pydantic <1.10.0
  • python-dotenv *
  • pytz *
  • pyyaml *
  • requests *
  • retry *
  • slackclient *
  • toml *
  • typer *
  • xgboost_ray *
release/requirements_buildkite.in pypi
  • PyGithub *
  • anyscale *
  • bazel-runfiles *
  • boto3 *
  • click *
  • freezegun *
  • google-cloud-storage *
  • jinja2 *
  • protobuf >=3.15.3,
  • pybuildkite *
  • pydantic <1.10.0
  • pytest *
  • pyyaml *
  • requests *
  • retry *
release/requirements_buildkite.txt pypi
  • aiohttp ==3.8.4
  • aiosignal ==1.3.1
  • anyscale ==0.5.106
  • argon2-cffi ==21.3.0
  • argon2-cffi-bindings ==21.2.0
  • async-timeout ==4.0.2
  • asynctest ==0.13.0
  • attrs ==23.1.0
  • backports-zoneinfo ==0.2.1
  • bazel-runfiles ==0.21.0
  • boto3 ==1.26.131
  • botocore ==1.29.131
  • cachetools ==5.3.0
  • certifi ==2023.5.7
  • cffi ==1.15.1
  • charset-normalizer ==3.1.0
  • click ==8.1.3
  • colorama ==0.4.6
  • cryptography ==40.0.2
  • decorator ==5.1.1
  • deprecated ==1.2.13
  • exceptiongroup ==1.1.1
  • expiringdict ==1.2.2
  • freezegun ==1.2.2
  • frozenlist ==1.3.3
  • gitdb ==4.0.10
  • gitpython ==3.1.31
  • google-api-core ==2.11.0
  • google-auth ==2.17.3
  • google-cloud-core ==2.3.2
  • google-cloud-storage ==2.9.0
  • google-crc32c ==1.5.0
  • google-resumable-media ==2.5.0
  • googleapis-common-protos ==1.59.0
  • halo ==0.0.31
  • httplib2 ==0.22.0
  • humanize ==4.6.0
  • idna ==3.4
  • importlib-metadata ==6.6.0
  • importlib-resources ==5.12.0
  • iniconfig ==2.0.0
  • jinja2 ==3.1.2
  • jmespath ==1.0.1
  • jsonpatch ==1.32
  • jsonpointer ==2.3
  • jsonschema ==4.17.3
  • log-symbols ==0.0.14
  • markdown-it-py ==2.2.0
  • markupsafe ==2.1.2
  • mdurl ==0.1.2
  • multidict ==6.0.4
  • oauth2client ==4.1.3
  • packaging ==23.1
  • pathspec ==0.11.1
  • pkgutil-resolve-name ==1.3.10
  • pluggy ==1.0.0
  • protobuf ==4.23.2
  • py ==1.11.0
  • pyasn1 ==0.5.0
  • pyasn1-modules ==0.3.0
  • pybuildkite ==1.2.2
  • pycparser ==2.21
  • pydantic ==1.9.2
  • pygithub ==1.58.2
  • pygments ==2.15.1
  • pyjwt ==2.7.0
  • pynacl ==1.5.0
  • pyparsing ==3.0.9
  • pyrsistent ==0.19.3
  • pytest ==7.3.1
  • python-dateutil ==2.8.2
  • pyyaml ==6.0
  • requests ==2.31.0
  • retry ==0.9.2
  • rich ==13.3.5
  • rsa ==4.9
  • s3transfer ==0.6.1
  • six ==1.16.0
  • smart-open ==6.3.0
  • smmap ==5.0.0
  • spinners ==0.0.24
  • tabulate ==0.9.0
  • termcolor ==2.3.0
  • tomli ==2.0.1
  • tqdm ==4.65.0
  • typing-extensions ==4.6.2
  • tzlocal ==5.0.1
  • urllib3 ==1.26.16
  • wrapt ==1.15.0
  • yarl ==1.9.2
  • zipp ==3.15.0
release/setup.py pypi
  • ray >=1.9
rllib_contrib/a2c/pyproject.toml pypi
  • gym [accept-rom-license]
  • gymnasium [accept-rom-license, atari]==0.26.3
  • ray [rllib]==2.5.0
rllib_contrib/a2c/requirements.txt pypi
  • tensorflow ==2.11.0
  • torch ==1.12.0
rllib_contrib/a3c/pyproject.toml pypi
  • gym [accept-rom-license]
  • gymnasium [mujoco]==0.26.3
  • ray [rllib]==2.3.1
rllib_contrib/a3c/requirements.txt pypi
  • tensorflow ==2.11.0
  • torch ==1.12.0
rllib_contrib/alpha_star/pyproject.toml pypi
  • gym *
  • gymnasium ==0.26.3
  • open-spiel ==1.3
  • ray [rllib]==2.5.0
rllib_contrib/alpha_star/requirements.txt pypi
  • tensorflow ==2.11.0
  • torch ==1.12.0
rllib_contrib/alpha_zero/pyproject.toml pypi
  • gymnasium ==0.26.3
  • ray [rllib]==2.5.1
rllib_contrib/alpha_zero/requirements.txt pypi
  • torch ==1.12.0
rllib_contrib/apex_ddpg/pyproject.toml pypi
  • gymnasium [atari]
  • ray [rllib]==2.5.0
rllib_contrib/apex_ddpg/requirements.txt pypi
  • tensorflow ==2.11.0
  • torch ==1.12.0
rllib_contrib/apex_dqn/pyproject.toml pypi
  • gymnasium [atari]
  • ray [rllib]==2.5.0
rllib_contrib/apex_dqn/requirements.txt pypi
  • tensorflow ==2.11.0
  • torch ==1.12.0
rllib_contrib/ars/pyproject.toml pypi
  • gymnasium *
  • ray [rllib]==2.5.0
rllib_contrib/ars/requirements.txt pypi
  • tensorflow ==2.11.0
  • torch ==1.12.0
rllib_contrib/bandit/pyproject.toml pypi
  • gymnasium *
  • ray [rllib]==2.5.0
  • recsim *
  • tensorflow-probability ==0.20.1
rllib_contrib/bandit/requirements.txt pypi
  • tensorflow ==2.13.0
  • tensorflow-probability ==0.20.1
  • torch ==1.12.0
rllib_contrib/crr/pyproject.toml pypi
  • gymnasium *
  • ray [rllib]==2.5.0
rllib_contrib/crr/requirements.txt pypi
  • torch ==1.12.0
rllib_contrib/ddpg/pyproject.toml pypi
  • gymnasium ==0.26.3
  • ray [rllib]==2.5.0
rllib_contrib/ddpg/requirements.txt pypi
  • tensorflow ==2.13.0
  • torch ==1.13.1
rllib_contrib/ddppo/pyproject.toml pypi
  • gymnasium *
  • ray [rllib]==2.5.0
rllib_contrib/ddppo/requirements.txt pypi
  • torch ==1.12.0
rllib_contrib/dt/pyproject.toml pypi
  • gymnasium *
  • ray [rllib]==2.5.0
rllib_contrib/dt/requirements.txt pypi
  • torch ==1.12.0
rllib_contrib/es/pyproject.toml pypi
  • gymnasium *
  • ray [rllib]==2.5.0
rllib_contrib/es/requirements.txt pypi
  • tensorflow ==2.11.0
  • torch ==1.12.0
rllib_contrib/leela_chess_zero/pyproject.toml pypi
  • chess ==1.10.0
  • gymnasium ==0.26.3
  • pettingzoo ==1.22.4
  • pygame *
  • ray [rllib]==2.5.0