penfa

R package for penalized factor analysis via trust-region algorithm and automatic multiple tuning parameter selection

https://github.com/egeminiani/penfa

Science Score: 13.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
  • codemeta.json file
  • .zenodo.json file
  • DOI references
    Found 4 DOI reference(s) in README
  • Academic publication links
  • Committers with academic emails
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (15.7%) to scientific vocabulary

Keywords

factor-analysis lasso latent-variables multiple-group optimization penalization psychometrics
Last synced: 6 months ago · JSON representation

Repository

R package for penalized factor analysis via trust-region algorithm and automatic multiple tuning parameter selection

Basic Info
Statistics
  • Stars: 3
  • Watchers: 1
  • Forks: 1
  • Open Issues: 2
  • Releases: 0
Topics
factor-analysis lasso latent-variables multiple-group optimization penalization psychometrics
Created over 4 years ago · Last pushed about 4 years ago
Metadata Files
Readme License

README.Rmd

---
output: github_document
---



```{r, include = FALSE}
knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>",
  fig.path = "man/figures/README-",
  out.width = "100%"
)
```

# penfa



[![minimal R
version](https://img.shields.io/badge/R%3E%3D-3.5.0-6666ff.svg)](https://cran.r-project.org/)
[![lifecycle](https://img.shields.io/badge/lifecycle-maturing-blue.svg)](https://lifecycle.r-lib.org/articles/stages.html)
[![Last-changedate](https://img.shields.io/badge/last%20change-`r gsub('-', '--', Sys.Date())`-brightgreen.svg)](https://github.com/egeminiani/penfa/commits/main)
[![Website](https://img.shields.io/badge/website-penfa-orange.svg?colorB=E91E63)](https://egeminiani.github.io/penfa/)
[![Licence](https://img.shields.io/badge/licence-GPL--3-orange.svg)](https://www.gnu.org/licenses/gpl-3.0.en.html)
[![R-CMD-check](https://github.com/egeminiani/penfa/workflows/R-CMD-check/badge.svg)](https://github.com/egeminiani/penfa/actions)


### Overview

An R package for estimating single- and multiple-group penalized factor models
via a trust-region algorithm with integrated automatic multiple tuning parameter
selection (Geminiani et al., 2021). Supported penalties include lasso, adaptive
lasso, scad, mcp, and ridge.

### Installation


You can install the released version of penfa from CRAN with:

``` r
install.packages("penfa")
```

And the development version from [GitHub](https://github.com/) with:

``` r
# install.packages("devtools")
devtools::install_github("egeminiani/penfa")
```
### Example

This is a basic example showing how to fit a *PENalized Factor Analysis* model
with the alasso penalty and the automatic tuning procedure. A shrinkage penalty 
is applied to the whole factor loading matrix.

Let's load the data (see `?ccdata` for details).

```{r data}
library(penfa)
data(ccdata)
```

**Step 1** : specify the model syntax

```{r syntax}
syntax = 'help  =~   h1 + h2 + h3 + h4 + h5 + h6 + h7 + 0*v1 + v2 + v3 + v4 + v5
          voice =~ 0*h1 + h2 + h3 + h4 + h5 + h6 + h7 +   v1 + v2 + v3 + v4 + v5'
```

**Step 2**: fit the model

```{r fit}
alasso_fit <- penfa(model  = syntax,
                    data   = ccdata,
                    std.lv = TRUE,
                    pen.shrink = "alasso")
```


```{r show}
alasso_fit
```

**Step 3**: inspect the results

```{r summary}
summary(alasso_fit)
```


### Vignettes and Tutorials

* See `vignette("automatic-tuning-selection")` for the estimation of a penalized
factor model with lasso and alasso penalties. The tuning parameter producing the
optimal amount of sparsity in the factor loading matrix is found through the
automatic tuning procedure.
 
* See `vignette("grid-search-tuning-selection")` for the estimation of a
penalized factor model with scad and mcp penalties. A grid search is conducted,
and the optimal tuning parameter is the one generating the penalized model with
the lowest GBIC (Generalized Bayesian Information Criterion).

* See ["multiple-group-analysis"](https://egeminiani.github.io/penfa/articles/articles/multiple-group-analysis.html) for the estimation of a multiple-group penalized factor model 
with the alasso penalty. This model encourages sparsity in the loading matrices 
and cross-group invariance of loadings and intercepts. The automatic multiple 
tuning parameter procedure is employed for finding the optimal tuning parameter 
vector.

* See ["plotting-penalty-matrix"](https://egeminiani.github.io/penfa/articles/articles/plotting-penalty-matrix.html) for details on how to produce interactive plots of the penalty matrices.


### Literature

* Geminiani, E., Marra, G., & Moustaki, I. (2021). "Single- and Multiple-Group
Penalized Factor Analysis: A Trust-Region Algorithm Approach with Integrated
Automatic Multiple Tuning Parameter Selection." Psychometrika, 86(1), 65-95. [https://doi.org/10.1007/s11336-021-09751-8](https://doi.org/10.1007/s11336-021-09751-8)

* Geminiani, E. (2020). "A Penalized Likelihood-Based Framework for Single and
Multiple-Group Factor Analysis Models." PhD thesis, University of Bologna.
[http://amsdottorato.unibo.it/9355/](http://amsdottorato.unibo.it/9355/).


### How to cite

```{r citation, echo=FALSE}
print(citation("penfa"), bibtex = TRUE)
```

GitHub Events

Total
Last Year

Committers

Last synced: over 2 years ago

All Time
  • Total Commits: 22
  • Total Committers: 1
  • Avg Commits per committer: 22.0
  • Development Distribution Score (DDS): 0.0
Past Year
  • Commits: 0
  • Committers: 0
  • Avg Commits per committer: 0.0
  • Development Distribution Score (DDS): 0.0
Top Committers
Name Email Commits
Elena Geminiani g****a@g****m 22

Issues and Pull Requests

Last synced: 7 months ago

All Time
  • Total issues: 1
  • Total pull requests: 1
  • Average time to close issues: N/A
  • Average time to close pull requests: N/A
  • Total issue authors: 1
  • Total pull request authors: 1
  • Average comments per issue: 0.0
  • Average comments per pull request: 0.0
  • Merged pull requests: 0
  • Bot issues: 0
  • Bot pull requests: 0
Past Year
  • Issues: 0
  • Pull requests: 0
  • Average time to close issues: N/A
  • Average time to close pull requests: N/A
  • Issue authors: 0
  • Pull request authors: 0
  • Average comments per issue: 0
  • Average comments per pull request: 0
  • Merged pull requests: 0
  • Bot issues: 0
  • Bot pull requests: 0
Top Authors
Issue Authors
  • psychelzh (1)
Pull Request Authors
  • rCarto (1)
Top Labels
Issue Labels
Pull Request Labels

Packages

  • Total packages: 1
  • Total downloads:
    • cran 264 last-month
  • Total dependent packages: 0
  • Total dependent repositories: 0
  • Total versions: 2
  • Total maintainers: 1
cran.r-project.org: penfa

Single- And Multiple-Group Penalized Factor Analysis

  • Versions: 2
  • Dependent Packages: 0
  • Dependent Repositories: 0
  • Downloads: 264 Last month
Rankings
Forks count: 21.9%
Stargazers count: 28.5%
Dependent packages count: 29.8%
Dependent repos count: 35.5%
Average: 39.5%
Downloads: 81.8%
Maintainers (1)
Last synced: 7 months ago

Dependencies

DESCRIPTION cran
  • R >= 3.5.0 depends
  • GJRM * imports
  • MASS * imports
  • methods * imports
  • mgcv * imports
  • stats * imports
  • trust * imports
  • utils * imports
  • cartography * suggests
  • knitr * suggests
  • plotly * suggests
  • rmarkdown * suggests