CAST

Developer Version of the R package CAST: Caret Applications for Spatio-Temporal models

https://github.com/hannameyer/cast

Science Score: 59.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
    Found 22 DOI reference(s) in README
  • Academic publication links
    Links to: arxiv.org, nature.com
  • Committers with academic emails
    4 of 14 committers (28.6%) from academic institutions
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (13.2%) to scientific vocabulary

Keywords

autocorrelation caret feature-selection machine-learning overfitting predictive-modeling spatial spatio-temporal variable-selection

Keywords from Contributors

geo book gdal interactive distribution sequences generic projection standardization optim
Last synced: 6 months ago · JSON representation

Repository

Developer Version of the R package CAST: Caret Applications for Spatio-Temporal models

Basic Info
Statistics
  • Stars: 116
  • Watchers: 18
  • Forks: 29
  • Open Issues: 8
  • Releases: 1
Topics
autocorrelation caret feature-selection machine-learning overfitting predictive-modeling spatial spatio-temporal variable-selection
Created over 8 years ago · Last pushed 8 months ago
Metadata Files
Readme Changelog

README.md

CAST: Caret Applications for Spatio-Temporal models

R-CMD-check CRAN status CRAN RStudio mirror downloads total CRAN RStudio mirror downloads

Supporting functionality to run 'caret' with spatial or spatial-temporal data. 'caret' is a frequently used package for model training and prediction using machine learning. CAST includes functions to improve spatial or spatial-temporal modelling tasks using 'caret'. To decrease spatial overfitting and to improve model performances, the package implements a forward feature selection that selects suitable predictor variables in view to their contribution to spatial or spatio-temporal model performance. CAST further includes functionality to estimate the (spatial) area of applicability of prediction models.

Note: The developer version of CAST can be found on https://github.com/HannaMeyer/CAST. The CRAN Version can be found on https://CRAN.R-project.org/package=CAST

The figure shows a very simple workflow for a spatial prediction mapping workflow, indicating which function in CAST can be used in the different steps to support the spatial prediction.

Package Website

https://hannameyer.github.io/CAST/

Tutorials

Scientific documentation of the methods

  • Meyer, H., Ludwig, L., Milà, C., Linnenbrink, J., Schumacher, F. (2024): The CAST package for training and assessment of spatial prediction models in R. arXiv, https://doi.org/10.48550/arXiv.2404.06978.

Spatial cross-validation

  • Milà, C., Mateu, J., Pebesma, E., Meyer, H. (2022): Nearest Neighbour Distance Matching Leave-One-Out Cross-Validation for map validation. Methods in Ecology and Evolution 00, 1– 13. https://doi.org/10.1111/2041-210X.13851

  • Linnenbrink, J., Milà, C., Ludwig, M., and Meyer, H.: kNNDM (2023): k-fold Nearest Neighbour Distance Matching Cross-Validation for map accuracy estimation. EGUsphere [preprint]. https://doi.org/10.5194/egusphere-2023-1308

  • Meyer, H., Reudenbach, C., Hengl, T., Katurji, M., Nauss, T. (2018): Improving performance of spatio-temporal machine learning models using forward feature selection and target-oriented validation. Environmental Modelling & Software, 101, 1-9. https://doi.org/10.1016/j.envsoft.2017.12.001

Spatial variable selection

  • Meyer, H., Reudenbach, C., Hengl, T., Katurji, M., Nauss, T. (2018): Improving performance of spatio-temporal machine learning models using forward feature selection and target-oriented validation. Environmental Modelling & Software, 101, 1-9. https://doi.org/10.1016/j.envsoft.2017.12.001

  • Meyer, H., Reudenbach, C., Wöllauer, S., Nauss, T. (2019): Importance of spatial predictor variable selection in machine learning applications - Moving from data reproduction to spatial prediction. Ecological Modelling. 411. https://doi.org/10.1016/j.ecolmodel.2019.108815

Area of applicability

  • Meyer, H., Pebesma, E. (2021). Predicting into unknown space? Estimating the area of applicability of spatial prediction models. Methods in Ecology and Evolution, 12, 1620– 1633. https://doi.org/10.1111/2041-210X.13650

  • Schumacher, F., Knoth, C., Ludwig, M., Meyer, H. (2024): Estimation of local training data point densities to support the assessment of spatial prediction uncertainty. EGUsphere. https://doi.org/10.5194/egusphere-2024-2730.

Applications and use cases

  • Meyer, H., Pebesma, E. (2022): Machine learning-based global maps of ecological variables and the challenge of assessing them. Nature Communications, 13. https://www.nature.com/articles/s41467-022-29838-9

  • Ludwig, M., Moreno-Martinez, A., Hoelzel, N., Pebesma, E., Meyer, H. (2023): Assessing and improving the transferability of current global spatial prediction models. Global Ecology and Biogeography. https://doi.org/10.1111/geb.13635.

  • Milà, C., Ludwig, M., Pebesma, E., Tonne, C., and Meyer, H.: Random forests with spatial proxies for environmental modelling: opportunities and pitfalls, EGUsphere [preprint]. https://doi.org/10.5194/egusphere-2024-138, 2024.

Owner

  • Name: Hanna Meyer
  • Login: HannaMeyer
  • Kind: user

Researcher at the Institute of Landscape Ecology at Münster University, working on remote sensing of the environment, machine learning, spatial data analysis, R

GitHub Events

Total
  • Create event: 4
  • Release event: 1
  • Issues event: 4
  • Watch event: 13
  • Delete event: 4
  • Issue comment event: 1
  • Push event: 28
  • Pull request event: 11
  • Fork event: 4
Last Year
  • Create event: 4
  • Release event: 1
  • Issues event: 4
  • Watch event: 13
  • Delete event: 4
  • Issue comment event: 1
  • Push event: 28
  • Pull request event: 11
  • Fork event: 4

Committers

Last synced: over 2 years ago

All Time
  • Total Commits: 390
  • Total Committers: 14
  • Avg Commits per committer: 27.857
  • Development Distribution Score (DDS): 0.285
Past Year
  • Commits: 85
  • Committers: 6
  • Avg Commits per committer: 14.167
  • Development Distribution Score (DDS): 0.376
Top Committers
Name Email Commits
HannaMeyer h****r@u****e 279
HannaMeyer h****r@g****e 29
Hanna h****1@g****m 28
Ludwigm6 m****3@g****m 19
carlesmila c****a@g****m 16
JanLinnenbrink j****k@w****e 5
gisma r****h@u****e 4
jonathom j****n@w****e 2
Edzer Pebesma e****a@u****e 2
dependabot[bot] 4****] 2
Darius Görgen d****2@w****e 1
abdelkrim-bsr b****d@g****m 1
pat-s p****z@g****m 1
Kendon Bell k****B 1
Committer Domains (Top 20 + Academic)

Issues and Pull Requests

Last synced: 6 months ago

All Time
  • Total issues: 27
  • Total pull requests: 49
  • Average time to close issues: 18 days
  • Average time to close pull requests: 4 days
  • Total issue authors: 23
  • Total pull request authors: 12
  • Average comments per issue: 1.11
  • Average comments per pull request: 0.1
  • Merged pull requests: 36
  • Bot issues: 0
  • Bot pull requests: 6
Past Year
  • Issues: 1
  • Pull requests: 3
  • Average time to close issues: N/A
  • Average time to close pull requests: 43 minutes
  • Issue authors: 1
  • Pull request authors: 2
  • Average comments per issue: 0.0
  • Average comments per pull request: 0.0
  • Merged pull requests: 1
  • Bot issues: 0
  • Bot pull requests: 2
Top Authors
Issue Authors
  • tobwen (3)
  • fmsabatini (3)
  • ManuelSpinola (2)
  • tnauss (1)
  • barbmuhling (1)
  • dylanbeaudette (1)
  • joshualerickson (1)
  • topepo (1)
  • WalidGharianiEAGLE (1)
  • pecto2020 (1)
  • pgoodling-usgs (1)
  • joheisig (1)
  • Ludwigm6 (1)
  • HannaMeyer (1)
  • dschlaep (1)
Pull Request Authors
  • carlesmila (24)
  • Ludwigm6 (18)
  • dependabot[bot] (10)
  • JanLinnenbrink (9)
  • fab-scm (6)
  • Nowosad (4)
  • jonathom (4)
  • pat-s (2)
  • gisma (2)
  • edzer (2)
  • goergen95 (1)
  • kendonB (1)
  • abdelkrim-bsr (1)
Top Labels
Issue Labels
Pull Request Labels
dependencies (10)

Packages

  • Total packages: 1
  • Total downloads:
    • cran 1,392 last-month
  • Total docker downloads: 13
  • Total dependent packages: 3
  • Total dependent repositories: 6
  • Total versions: 20
  • Total maintainers: 1
cran.r-project.org: CAST

'caret' Applications for Spatial-Temporal Models

  • Versions: 20
  • Dependent Packages: 3
  • Dependent Repositories: 6
  • Downloads: 1,392 Last month
  • Docker Downloads: 13
Rankings
Forks count: 2.7%
Stargazers count: 4.2%
Dependent repos count: 11.9%
Average: 12.1%
Dependent packages count: 13.7%
Downloads: 15.2%
Docker downloads count: 24.9%
Maintainers (1)
Last synced: 6 months ago

Dependencies

.github/workflows/R-CMD-check.yaml actions
  • actions/checkout v3 composite
  • r-lib/actions/check-r-package v2 composite
  • r-lib/actions/setup-r v2 composite
  • r-lib/actions/setup-r-dependencies v2 composite
.github/workflows/pkgdown.yaml actions
  • JamesIves/github-pages-deploy-action v4.4.1 composite
  • actions/checkout v3 composite
  • r-lib/actions/setup-pandoc v2 composite
  • r-lib/actions/setup-r v2 composite
  • r-lib/actions/setup-r-dependencies v2 composite
DESCRIPTION cran
  • R >= 4.1.0 depends
  • FNN * imports
  • caret * imports
  • data.table * imports
  • ggplot2 * imports
  • grDevices * imports
  • graphics * imports
  • lattice * imports
  • methods * imports
  • plyr * imports
  • reshape * imports
  • stats * imports
  • utils * imports
  • zoo * imports
  • MASS * suggests
  • doParallel * suggests
  • gridExtra * suggests
  • knitr * suggests
  • latticeExtra * suggests
  • lubridate * suggests
  • mapview * suggests
  • parallel * suggests
  • randomForest * suggests
  • raster * suggests
  • rgdal * suggests
  • rgeos * suggests
  • rmarkdown * suggests
  • rnaturalearth * suggests
  • scales * suggests
  • scam * suggests
  • sf * suggests
  • sp * suggests
  • stars * suggests
  • terra * suggests
  • viridis * suggests
  • virtualspecies * suggests