statgenGWAS
See https://biometris.github.io/statgenGWAS for a full description
Science Score: 26.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
○CITATION.cff file
-
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
○DOI references
-
○Academic publication links
-
○Committers with academic emails
-
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (16.1%) to scientific vocabulary
Keywords
cran
genetics
gwas
r-package
Last synced: 6 months ago
·
JSON representation
Repository
See https://biometris.github.io/statgenGWAS for a full description
Basic Info
- Host: GitHub
- Owner: Biometris
- Language: R
- Default Branch: main
- Homepage: https://biometris.github.io/statgenGWAS/
- Size: 25.4 MB
Statistics
- Stars: 15
- Watchers: 3
- Forks: 6
- Open Issues: 5
- Releases: 0
Topics
cran
genetics
gwas
r-package
Created about 6 years ago
· Last pushed 8 months ago
Metadata Files
Readme
Changelog
README.Rmd
---
output: github_document
---
```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "man/figures/README-",
out.width = "75%"
)
```
# statgenGWAS
[](https://www.r-pkg.org/pkg/statgenGWAS)
[](https://www.r-pkg.org/pkg/statgenGWAS)
[](https://github.com/Biometris/statgenGWAS/actions?workflow=R-CMD-check)
[](https://app.codecov.io/gh/Biometris/statgenGWAS)
**statgenGWAS** is an R package for fast single trait Genome Wide Association Studies (GWAS).
statgenGWAS has extensive options for summarizing and visualizing results. The example below shows a selection of what is possible. For a full overview of all options it is best to read the [**vignette**](https://biometris.github.io/statgenGWAS/articles/GWAS.html).
## Installation
* Install from CRAN:
```{r, eval = FALSE}
install.packages("statgenGWAS")
```
* Install latest development version from GitHub (requires [remotes](https://github.com/r-lib/remotes) package):
```{r, eval = FALSE}
remotes::install_github("Biometris/statgenGWAS", ref = "develop", dependencies = TRUE)
```
## Examples
Example using the data from the European Union project DROPS. The same data is used in the vignette and described there in detail.
First get the data in the form required by the package, converting it to an object of class **g**(enomic)**Data**.
```{r createGData}
library(statgenGWAS)
## Read data.
data("dropsMarkers")
data("dropsMap")
data("dropsPheno")
## Add genotypes as row names of dropsMarkers and drop Ind column.
rownames(dropsMarkers) <- dropsMarkers[["Ind"]]
dropsMarkers <- dropsMarkers[colnames(dropsMarkers) != "Ind"]
## Add genotypes as row names of dropsMap.
rownames(dropsMap) <- dropsMap[["SNP.names"]]
## Rename Chomosome and Position columns.
colnames(dropsMap)[match(c("Chromosome", "Position"), colnames(dropsMap))] <- c("chr", "pos")
## Rename Variety_ID in phenotypic data to genotype.
colnames(dropsPheno)[colnames(dropsPheno) == "Variety_ID"] <- "genotype"
## Select relevant columns and convert data to a list.
dropsPhenoList <- split(x = dropsPheno[c("genotype", "grain.yield",
"grain.number", "seed.size",
"anthesis", "silking", "plant.height",
"tassel.height", "ear.height")],
f = dropsPheno[["Experiment"]])
## Create a gData object all data.
gDataDrops <- createGData(geno = dropsMarkers, map = dropsMap, pheno = dropsPhenoList)
```
```{r removeDupMarkers}
## Remove duplicate SNPs from gDataDrops.
gDataDropsDedup <- codeMarkers(gDataDrops, impute = FALSE, verbose = TRUE)
```
```{r stg}
## Run single trait GWAS for traits 'grain.yield' and 'anthesis' for trial Mur13W.
GWASDrops <- runSingleTraitGwas(gData = gDataDropsDedup,
trials = "Mur13W",
traits = c("grain.yield", "anthesis"))
```
```{r qqStg}
## QQ plot of GWAS Drops.
plot(GWASDrops, plotType = "qq", trait = "grain.yield")
```
```{r manhattanStg}
## Manhattan plot of GWAS Drops.
plot(GWASDrops, plotType = "manhattan", trait = "grain.yield")
```
```{r qtlStgNorm}
## Qtl plot of GWAS Drops.
## Set significance threshold to 4 and normalize effect estimates.
plot(GWASDrops, plotType = "qtl", yThr = 4, normalize = TRUE)
```
Owner
- Name: Wageningen Universtiy & Research, Biometris
- Login: Biometris
- Kind: organization
- Email: biometris@wur.nl
- Location: Wageningen, The Netherlands
- Website: https://wur.eu/biometris
- Repositories: 8
- Profile: https://github.com/Biometris
Biometris develops statistical and mathematical methods for the quantification of biological processes and processes in our living environment.
GitHub Events
Total
- Issues event: 4
- Watch event: 3
- Issue comment event: 7
- Push event: 39
- Fork event: 3
- Create event: 2
Last Year
- Issues event: 4
- Watch event: 3
- Issue comment event: 7
- Push event: 39
- Fork event: 3
- Create event: 2
Committers
Last synced: over 2 years ago
Top Committers
| Name | Commits | |
|---|---|---|
| Rossum, Bart-Jan van | b****m@w****l | 343 |
| mille016 | e****t@w****l | 1 |
Committer Domains (Top 20 + Academic)
wur.nl: 2
Issues and Pull Requests
Last synced: 6 months ago
All Time
- Total issues: 17
- Total pull requests: 0
- Average time to close issues: 5 months
- Average time to close pull requests: N/A
- Total issue authors: 16
- Total pull request authors: 0
- Average comments per issue: 3.47
- Average comments per pull request: 0
- Merged pull requests: 0
- Bot issues: 0
- Bot pull requests: 0
Past Year
- Issues: 4
- Pull requests: 0
- Average time to close issues: 4 days
- Average time to close pull requests: N/A
- Issue authors: 4
- Pull request authors: 0
- Average comments per issue: 2.5
- Average comments per pull request: 0
- Merged pull requests: 0
- Bot issues: 0
- Bot pull requests: 0
Top Authors
Issue Authors
- ne1s0n (2)
- JiayiHelenZhou (1)
- teunbrand (1)
- wrengs (1)
- alethere (1)
- kostasgalexiou (1)
- jeremysutherland (1)
- khaled-alshamaa (1)
- yxmmnn (1)
- lzhangUT (1)
- Pkuin (1)
- zjwinn (1)
- JunxiFeng (1)
- ljbrzozowski (1)
- zz-xiao (1)
Pull Request Authors
Top Labels
Issue Labels
Pull Request Labels
Packages
- Total packages: 1
-
Total downloads:
- cran 806 last-month
- Total docker downloads: 21,659
- Total dependent packages: 3
- Total dependent repositories: 2
- Total versions: 12
- Total maintainers: 1
cran.r-project.org: statgenGWAS
Genome Wide Association Studies
- Homepage: https://biometris.github.io/statgenGWAS/index.html
- Documentation: http://cran.r-project.org/web/packages/statgenGWAS/statgenGWAS.pdf
- License: GPL-3
-
Latest release: 1.0.12
published 8 months ago
Rankings
Docker downloads count: 0.6%
Forks count: 12.2%
Average: 13.6%
Dependent packages count: 13.7%
Stargazers count: 17.4%
Downloads: 18.8%
Dependent repos count: 19.2%
Maintainers (1)
Last synced:
7 months ago
Dependencies
DESCRIPTION
cran
- R >= 3.6 depends
- Rcpp * imports
- data.table * imports
- ggplot2 >= 3.0.0 imports
- sommer >= 3.7.3 imports
- knitr * suggests
- officer * suggests
- rmarkdown * suggests
- tinytest * suggests
.github/workflows/check.yaml
actions
- actions/checkout v3 composite
- r-lib/actions/check-r-package v2 composite
- r-lib/actions/setup-pandoc v2 composite
- r-lib/actions/setup-r v2 composite
- r-lib/actions/setup-r-dependencies v2 composite
.github/workflows/pkgdown.yaml
actions
- JamesIves/github-pages-deploy-action v4.4.1 composite
- actions/checkout v3 composite
- r-lib/actions/setup-pandoc v2 composite
- r-lib/actions/setup-r v2 composite
- r-lib/actions/setup-r-dependencies v2 composite
.github/workflows/test-coverage.yaml
actions
- actions/checkout v3 composite
- r-lib/actions/setup-r v2 composite
- r-lib/actions/setup-r-dependencies v2 composite