matrixCorr
Scalable computation of correlation matrices using optimized C++ routines
Science Score: 26.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
○CITATION.cff file
-
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
○DOI references
-
○Academic publication links
-
○Academic email domains
-
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (12.9%) to scientific vocabulary
Keywords
correlation
correlation-analysis
correlation-coefficient
cpp
Last synced: 6 months ago
·
JSON representation
Repository
Scalable computation of correlation matrices using optimized C++ routines
Basic Info
Statistics
- Stars: 1
- Watchers: 0
- Forks: 0
- Open Issues: 0
- Releases: 1
Topics
correlation
correlation-analysis
correlation-coefficient
cpp
Created 6 months ago
· Last pushed 6 months ago
Metadata Files
Readme
Contributing
License
Codemeta
README.Rmd
---
output: github_document
---
```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "man/figures/README-",
out.width = "100%"
)
```
# matrixCorr
[](https://github.com/Prof-ThiagoOliveira/matrixCorr/actions/workflows/R-CMD-check.yaml)
[](https://github.com/Prof-ThiagoOliveira/matrixCorr/actions/workflows/test-coverage.yaml)
`matrixCorr` computes correlation and related association matrices from small to
high-dimensional data using simple, consistent functions and sensible defaults.
It includes shrinkage and robust options for noisy or **p ≥ n** settings, plus
convenient print/plot methods. Performance-critical paths are implemented in
C++ with BLAS/OpenMP and memory-aware symmetric updates. The API accepts base
matrices and data frames and returns standard R objects via a consistent S3
interface.
Supported measures include Pearson, Spearman, Kendall, distance correlation,
partial correlation, and robust biweight mid-correlation; agreement tools cover
Bland–Altman (two-method and repeated-measures) and Lin’s concordance
correlation coefficient (including repeated-measures LMM/REML extensions).
## Features
- High-performance C++ backend using `Rcpp`
- General correlations such as `pearson_corr()`, `spearman_rho()`, `kendall_tau()`
- Robust correlation metrics (`biweight_mid_corr()`)
- Distance correlation (`distance_corr()`)
- Partial correlation (`partial_correlation()`)
- Shrinkage for $p >> n$ (`schafer_corr()`)
- Agreement metrics
* Bland–Altman (two-method `bland_altman()` and repeated-measures `bland_altman_repeated()`),
* Lin’s concordance correlation coefficient (pairwise `ccc()`, repeated-measures LMM/REML `ccc_lmm_reml()` and non-parametric `ccc_pairwise_u_stat()`)
## Installation
```r
# Install from GitHub
# install.packages("devtools")
devtools::install_github("Prof-ThiagoOliveira/matrixCorr")
```
## Example
### Correlation matrices (Pearson, Spearman, Kendall)
```r
library(matrixCorr)
set.seed(1)
X <- as.data.frame(matrix(rnorm(300 * 6), ncol = 6))
names(X) <- paste0("V", 1:6)
R_pear <- pearson_corr(X)
R_spr <- spearman_rho(X)
R_ken <- kendall_tau(X)
print(R_pear, digits = 2)
plot(R_spr) # heatmap
```
### Robust correlation (biweight mid-correlation)
```r
set.seed(2)
Y <- X
# inject outliers
Y$V1[sample.int(nrow(Y), 8)] <- Y$V1[sample.int(nrow(Y), 8)] + 8
R_bicor <- biweight_mid_corr(Y)
print(R_bicor, digits = 2)
```
### High-dimensional shrinkage correlation ($p >> n$)
```r
set.seed(3)
n <- 60; p <- 200
Xd <- matrix(rnorm(n * p), n, p)
colnames(Xd) <- paste0("G", seq_len(p))
R_shr <- schafer_corr(Xd)
print(R_shr, digits = 2, max_rows = 6, max_cols = 6)
```
### Partial correlation matrix
```r
R_part <- partial_correlation(X)
print(R_part, digits = 2)
```
### Distance correlation matrix
```r
R_dcor <- distance_corr(X)
print(R_dcor, digits = 2)
```
## Agreement analyses
### Two-method Bland–Altman
```r
set.seed(4)
x <- rnorm(120, 100, 10)
y <- x + 0.5 + rnorm(120, 0, 8)
ba <- bland_altman(x, y)
print(ba)
plot(ba)
```
### Repeated-measures Bland–Altman (pairwise matrix)
```r
set.seed(5)
S <- 20; Tm <- 6
subj <- rep(seq_len(S), each = Tm)
time <- rep(seq_len(Tm), times = S)
true <- rnorm(S, 50, 6)[subj] + (time - mean(time)) * 0.4
mA <- true + rnorm(length(true), 0, 2)
mB <- true + 1.0 + rnorm(length(true), 0, 2.2)
mC <- 0.95 * true + rnorm(length(true), 0, 2.5)
dat <- rbind(
data.frame(y = mA, subject = subj, method = "A", time = time),
data.frame(y = mB, subject = subj, method = "B", time = time),
data.frame(y = mC, subject = subj, method = "C", time = time)
)
dat$method <- factor(dat$method, levels = c("A","B","C"))
ba_rep <- bland_altman_repeated(
data = dat, response = "y", subject = "subject",
method = "method", time = "time",
include_slope = FALSE, use_ar1 = FALSE
)
summary(ba_rep)
# plot(ba_rep) # faceted BA scatter by pair
```
### Two-method Lin's concordance correlation
```
# Lin's CCC for x vs y (with CI + heatmap)
cc2 <- ccc(cbind(x = x, y = y), ci = TRUE)
print(cc2)
summary(cc2)
plot(cc2, title = "Lin's CCC (two methods)")
```
### Lin’s concordance correlation coefficient (repeated-measures LMM/REML)
```r
set.seed(6)
S <- 30; Tm <- 8
id <- factor(rep(seq_len(S), each = 2 * Tm))
method <- factor(rep(rep(c("A","B"), each = Tm), times = S))
time <- rep(rep(seq_len(Tm), times = 2), times = S)
u <- rnorm(S, 0, 0.8)[as.integer(id)]
g <- rnorm(S * Tm, 0, 0.5)
g <- g[ (as.integer(id) - 1L) * Tm + as.integer(time) ]
y <- (method == "B") * 0.3 + u + g + rnorm(length(id), 0, 0.7)
dat_ccc <- data.frame(y, id, method, time)
# Using non-parametric approch
ccc_rep_u <- ccc_pairwise_u_stat(
data = dat_ccc, response = "y", method = "method", time = "time",
ci = TRUE
)
print(ccc_rep_u)
summary(ccc_rep_u)
plot(ccc_rep_u, title = "Repeated-measures CCC (U-statistic)")
# Using LMM approch
fit_ccc <- ccc_lmm_reml(dat_ccc, response = "y", rind = "id",
method = "method", time = "time", ci = TRUE)
summary(fit_ccc) # overall CCC, variance components, SEs/CI
```
## Contributing
Issues and pull requests are welcome. Please see `CONTRIBUTING.md` for
guidelines and `cran-comments.md`/`DESCRIPTION` for package metadata.
## License
MIT [Thiago de Paula Oliveira](https://orcid.org/0000-0002-4555-2584)
See inst/LICENSE for the full MIT license text.
Owner
- Name: Thiago de Paula Oliveira
- Login: Prof-ThiagoOliveira
- Kind: user
- Location: Edinburgh, Scotland
- Company: AbacusBio
- Website: https://prof-thiagooliveira.netlify.com/
- Repositories: 4
- Profile: https://github.com/Prof-ThiagoOliveira
Dr Thiago de Paula Oliveira is a Researcher Biostatistician at the AbacusBio.
CodeMeta (codemeta.json)
{
"@context": "https://doi.org/10.5063/schema/codemeta-2.0",
"@type": "SoftwareSourceCode",
"identifier": "matrixCorr",
"description": "Compute correlation and other association matrices from small to high-dimensional datasets with relative simple functions and sensible defaults. Includes options for shrinkage and robustness to improve results in noisy or high-dimensional settings (p >= n), plus convenient print/plot methods for inspection. Implemented with optimised C++ backends using BLAS/OpenMP and memory-aware symmetric updates. Works with base matrices and data frames, returning standard R objects via a consistent S3 interface. Useful across genomics, agriculture, and machine-learning workflows. Supports Pearson, Spearman, Kendall, distance correlation, partial correlation, and robust biweight mid-correlation; BlandAltman analyses and Lin's concordance correlation coefficient (including repeated-measures extensions). Methods based on Ledoit and Wolf (2004) <doi:10.1016/S0047-259X(03)00096-4>; Schfer and Strimmer (2005) <doi:10.2202/1544-6115.1175>; Lin (1989) <doi:10.2307/2532051>.",
"name": "matrixCorr: Collection of Correlation and Association Estimators",
"codeRepository": "https://github.com/Prof-ThiagoOliveira/matrixCorr",
"issueTracker": "https://github.com/Prof-ThiagoOliveira/matrixCorr/issues",
"license": "https://spdx.org/licenses/MIT",
"version": "0.4.3",
"programmingLanguage": {
"@type": "ComputerLanguage",
"name": "R",
"url": "https://r-project.org"
},
"runtimePlatform": "R version 4.4.3 (2025-02-28 ucrt)",
"provider": {
"@id": "https://cran.r-project.org",
"@type": "Organization",
"name": "Comprehensive R Archive Network (CRAN)",
"url": "https://cran.r-project.org"
},
"author": [
{
"@type": "Person",
"givenName": "Thiago de Paula",
"familyName": "Oliveira",
"email": "thiago.paula.oliveira@gmail.com",
"@id": "https://orcid.org/0000-0002-4555-2584"
}
],
"maintainer": [
{
"@type": "Person",
"givenName": "Thiago de Paula",
"familyName": "Oliveira",
"email": "thiago.paula.oliveira@gmail.com",
"@id": "https://orcid.org/0000-0002-4555-2584"
}
],
"softwareSuggestions": [
{
"@type": "SoftwareApplication",
"identifier": "knitr",
"name": "knitr",
"provider": {
"@id": "https://cran.r-project.org",
"@type": "Organization",
"name": "Comprehensive R Archive Network (CRAN)",
"url": "https://cran.r-project.org"
},
"sameAs": "https://CRAN.R-project.org/package=knitr"
},
{
"@type": "SoftwareApplication",
"identifier": "rmarkdown",
"name": "rmarkdown",
"provider": {
"@id": "https://cran.r-project.org",
"@type": "Organization",
"name": "Comprehensive R Archive Network (CRAN)",
"url": "https://cran.r-project.org"
},
"sameAs": "https://CRAN.R-project.org/package=rmarkdown"
},
{
"@type": "SoftwareApplication",
"identifier": "testthat",
"name": "testthat",
"provider": {
"@id": "https://cran.r-project.org",
"@type": "Organization",
"name": "Comprehensive R Archive Network (CRAN)",
"url": "https://cran.r-project.org"
},
"sameAs": "https://CRAN.R-project.org/package=testthat"
},
{
"@type": "SoftwareApplication",
"identifier": "MASS",
"name": "MASS",
"provider": {
"@id": "https://cran.r-project.org",
"@type": "Organization",
"name": "Comprehensive R Archive Network (CRAN)",
"url": "https://cran.r-project.org"
},
"sameAs": "https://CRAN.R-project.org/package=MASS"
},
{
"@type": "SoftwareApplication",
"identifier": "viridisLite",
"name": "viridisLite",
"provider": {
"@id": "https://cran.r-project.org",
"@type": "Organization",
"name": "Comprehensive R Archive Network (CRAN)",
"url": "https://cran.r-project.org"
},
"sameAs": "https://CRAN.R-project.org/package=viridisLite"
}
],
"softwareRequirements": {
"1": {
"@type": "SoftwareApplication",
"identifier": "Rcpp",
"name": "Rcpp",
"version": ">= 1.1.0",
"provider": {
"@id": "https://cran.r-project.org",
"@type": "Organization",
"name": "Comprehensive R Archive Network (CRAN)",
"url": "https://cran.r-project.org"
},
"sameAs": "https://CRAN.R-project.org/package=Rcpp"
},
"2": {
"@type": "SoftwareApplication",
"identifier": "ggplot2",
"name": "ggplot2",
"version": ">= 3.5.2",
"provider": {
"@id": "https://cran.r-project.org",
"@type": "Organization",
"name": "Comprehensive R Archive Network (CRAN)",
"url": "https://cran.r-project.org"
},
"sameAs": "https://CRAN.R-project.org/package=ggplot2"
},
"3": {
"@type": "SoftwareApplication",
"identifier": "Matrix",
"name": "Matrix",
"version": ">= 1.7.2",
"provider": {
"@id": "https://cran.r-project.org",
"@type": "Organization",
"name": "Comprehensive R Archive Network (CRAN)",
"url": "https://cran.r-project.org"
},
"sameAs": "https://CRAN.R-project.org/package=Matrix"
},
"SystemRequirements": null
},
"fileSize": "55696.68KB",
"readme": "https://github.com/Prof-ThiagoOliveira/matrixCorr/blob/main/README.md",
"contIntegration": [
"https://github.com/Prof-ThiagoOliveira/matrixCorr/actions/workflows/R-CMD-check.yaml",
"https://app.codecov.io/gh/Prof-ThiagoOliveira/kendall_tau_rank_corr"
],
"keywords": [
"correlation",
"correlation-analysis",
"correlation-coefficient",
"cpp"
]
}
GitHub Events
Total
- Push event: 55
Last Year
- Push event: 55
Packages
- Total packages: 1
-
Total downloads:
- cran 58 last-month
- Total dependent packages: 0
- Total dependent repositories: 0
- Total versions: 1
- Total maintainers: 1
cran.r-project.org: matrixCorr
Collection of Correlation and Association Estimators
- Homepage: https://github.com/Prof-ThiagoOliveira/matrixCorr
- Documentation: http://cran.r-project.org/web/packages/matrixCorr/matrixCorr.pdf
- License: MIT + file LICENSE
-
Latest release: 0.3.1
published 6 months ago
Rankings
Dependent packages count: 25.7%
Dependent repos count: 31.5%
Average: 47.5%
Downloads: 85.4%
Maintainers (1)
Last synced:
6 months ago
Dependencies
.github/workflows/R-CMD-check.yaml
actions
- actions/checkout v4 composite
- r-lib/actions/check-r-package v2 composite
- r-lib/actions/setup-pandoc v2 composite
- r-lib/actions/setup-r v2 composite
- r-lib/actions/setup-r-dependencies v2 composite
.github/workflows/test-coverage.yaml
actions
- actions/checkout v4 composite
- actions/upload-artifact v4 composite
- codecov/codecov-action v5 composite
- r-lib/actions/setup-r v2 composite
- r-lib/actions/setup-r-dependencies v2 composite
DESCRIPTION
cran
- Matrix >= 1.7.2 imports
- Rcpp >= 1.1.0 imports
- ggplot2 >= 3.5.2 imports
- MASS * suggests
- knitr * suggests
- rmarkdown * suggests
- testthat * suggests
- viridisLite * suggests