AnanseSeurat
Single cell ANANSE Gene-regulatory-network analysis from Seurat objects
Science Score: 26.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
○CITATION.cff file
-
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
○DOI references
-
○Academic publication links
-
○Committers with academic emails
-
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (14.9%) to scientific vocabulary
Keywords
grn-analysis
r
seurat-objects
single-cell
single-cell-atac-seq
single-cell-rna-seq
Last synced: 6 months ago
·
JSON representation
Repository
Single cell ANANSE Gene-regulatory-network analysis from Seurat objects
Basic Info
Statistics
- Stars: 8
- Watchers: 1
- Forks: 3
- Open Issues: 2
- Releases: 4
Topics
grn-analysis
r
seurat-objects
single-cell
single-cell-atac-seq
single-cell-rna-seq
Created over 3 years ago
· Last pushed over 2 years ago
Metadata Files
Readme
Changelog
License
README.Rmd
---
output: github_document
---
```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "man/figures/",
out.width = "100%"
)
```
# `AnanseSeurat` package
[](https://github.com/JGASmits/AnanseSeurat/actions/workflows/R-CMD-check.yaml)
[](https://codecov.io/github/JGASmits/AnanseSeurat)
[](https://cran.r-project.org/package=AnanseSeurat)
The `AnanseSeurat` package takes pre-processed clustered single cell objects of scRNAseq and scATACseq or a multiome combination, and generates files for gene regulatory network (GRN) analysis.
## Installation
`AnanseSeurat` can be installed using
```{r, eval=FALSE}
library(devtools) # Tools to Make Developing R Packages Easier # Tools to Make Developing R Packages Easier
Sys.unsetenv("GITHUB_PAT")
remotes::install_github("JGASmits/AnanseSeurat@main")
```
### Usage
```{r eval=FALSE}
library("AnanseSeurat")
rds_file <- './scANANSE/preprocessed_PDMC.Rds'
pbmc <- readRDS(rds_file)
```
Next you can output the data from your single cell object, the file format, config file and sample file are all ready to automate GRN analysis using `anansnake`.
https://github.com/vanheeringen-lab/anansnake
```{r, eval=FALSE}
export_CPM_scANANSE(
pbmc,
min_cells = 25,
output_dir = './scANANSE/analysis',
cluster_id = 'predicted.id',
RNA_count_assay = 'RNA'
)
export_ATAC_scANANSE(
pbmc,
min_cells = 25,
output_dir = './scANANSE/analysis',
cluster_id = 'predicted.id',
ATAC_peak_assay = 'peaks'
)
# Specify additional contrasts:
contrasts <- c('B-naive_B-memory',
'B-memory_B-naive',
'B-naive_CD14-Mono',
'CD14-Mono_B-naive')
config_scANANSE(
pbmc,
min_cells = 25,
output_dir = './scANANSE/analysis',
cluster_id = 'predicted.id',
additional_contrasts = contrasts
)
DEGS_scANANSE(
pbmc,
min_cells = 25,
output_dir = './scANANSE/analysis',
cluster_id = 'predicted.id',
additional_contrasts = contrasts
)
```
### install and run anansnake
Follow the instructions its respective github page, https://github.com/vanheeringen-lab/anansnake
After activating the conda environment, use the generated files to run GRN analysis using your single cell cluster data:
```{bash eval=FALSE}
anansnake \
--configfile scANANSE/analysis/config.yaml \
--resources mem_mb=48_000 --cores 12
```
### import ANANSE results back to your single cell object
After running Anansnake, you can import the TF influence scores back into your single cell object of choice
```{r eval=FALSE}
pbmc <- import_seurat_scANANSE(pbmc,
cluster_id = 'predicted.id',
anansnake_inf_dir = "./scANANSE/analysis/influence")
TF_influence <- per_cluster_df(pbmc,
cluster_id = 'predicted.id',
assay = 'influence')
```
### Thanks to:
* Julian A. Arts and his Pycharm equivalent of this package https://github.com/Arts-of-coding/AnanseScanpy
* Siebren Frohlich and his anansnake implementation https://github.com/vanheeringen-lab/anansnake
* Rebecca R. Snabel for her implementation of the motif expression correlation analysis
* Branco Heuts for testing
# Credits
The hex sticker is generated using the [```hexSticker```](https://github.com/GuangchuangYu/hexSticker) package.
Owner
- Name: Jos Smits
- Login: JGASmits
- Kind: user
- Company: Radboud university
- Website: https://orcid.org/0000-0001-5858-3905
- Repositories: 4
- Profile: https://github.com/JGASmits
GitHub Events
Total
- Watch event: 1
Last Year
- Watch event: 1
Committers
Last synced: almost 3 years ago
All Time
- Total Commits: 102
- Total Committers: 4
- Avg Commits per committer: 25.5
- Development Distribution Score (DDS): 0.137
Top Committers
| Name | Commits | |
|---|---|---|
| JGASmits | j****3@h****m | 88 |
| Rebecza | r****l@h****m | 10 |
| Rebecca Snabel | s****l@c****l | 3 |
| J Arts | 7****g@u****m | 1 |
Committer Domains (Top 20 + Academic)
Issues and Pull Requests
Last synced: 6 months ago
All Time
- Total issues: 9
- Total pull requests: 26
- Average time to close issues: 15 days
- Average time to close pull requests: about 21 hours
- Total issue authors: 4
- Total pull request authors: 4
- Average comments per issue: 1.33
- Average comments per pull request: 0.19
- Merged pull requests: 25
- Bot issues: 0
- Bot pull requests: 0
Past Year
- Issues: 0
- Pull requests: 1
- Average time to close issues: N/A
- Average time to close pull requests: N/A
- Issue authors: 0
- Pull request authors: 1
- Average comments per issue: 0
- Average comments per pull request: 0.0
- Merged pull requests: 0
- Bot issues: 0
- Bot pull requests: 0
Top Authors
Issue Authors
- sylestiel (4)
- Rebecza (2)
- JGASmits (1)
- saketkc (1)
Pull Request Authors
- JGASmits (16)
- Rebecza (8)
- Arts-of-coding (1)
- MichaelChirico (1)
Top Labels
Issue Labels
Pull Request Labels
Packages
- Total packages: 1
-
Total downloads:
- cran 773 last-month
- Total docker downloads: 48
- Total dependent packages: 0
- Total dependent repositories: 0
- Total versions: 2
- Total maintainers: 1
cran.r-project.org: AnanseSeurat
Construct ANANSE GRN-Analysis Seurat
- Homepage: https://github.com/JGASmits/AnanseSeurat/
- Documentation: http://cran.r-project.org/web/packages/AnanseSeurat/AnanseSeurat.pdf
- License: Apache License (≥ 2)
-
Latest release: 1.2.0
published over 2 years ago
Rankings
Forks count: 17.8%
Stargazers count: 22.5%
Average: 27.1%
Dependent packages count: 29.8%
Downloads: 30.1%
Dependent repos count: 35.5%
Maintainers (1)
Last synced:
6 months ago
Dependencies
.github/workflows/R-CMD-check.yaml
actions
- actions/checkout v2 composite
- actions/upload-artifact main composite
- r-lib/actions/check-r-package v1 composite
- r-lib/actions/setup-pandoc v1 composite
- r-lib/actions/setup-r v1 composite
- r-lib/actions/setup-r-dependencies v1 composite
DESCRIPTION
cran
- Seurat * imports
- dplyr * imports
- ggplot2 * imports
- ggpubr * imports
- magrittr * imports
- patchwork * imports
- png * imports
- purrr * imports
- rlang * imports
- stringr * imports
- utils * imports
.github/workflows/test-coverage.yaml
actions
- actions/checkout v3 composite
- actions/upload-artifact v3 composite
- r-lib/actions/setup-r v2 composite
- r-lib/actions/setup-r-dependencies v2 composite