psbcSpeedUp

Penalized Semiparametric Bayesian Cox Models

https://github.com/ocbe-uio/psbcspeedup

Science Score: 26.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
  • DOI references
    Found 17 DOI reference(s) in README
  • Academic publication links
  • Academic email domains
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (12.0%) to scientific vocabulary

Keywords

bayesian-cox-models omics-data survival-analysis
Last synced: 6 months ago · JSON representation

Repository

Penalized Semiparametric Bayesian Cox Models

Basic Info
  • Host: GitHub
  • Owner: ocbe-uio
  • License: gpl-3.0
  • Language: C++
  • Default Branch: main
  • Homepage:
  • Size: 789 KB
Statistics
  • Stars: 3
  • Watchers: 1
  • Forks: 1
  • Open Issues: 0
  • Releases: 4
Topics
bayesian-cox-models omics-data survival-analysis
Created over 2 years ago · Last pushed over 1 year ago
Metadata Files
Readme License

README.md

psbcSpeedUp

CRAN r-universe R-CMD-check License DOI

This is a C++ speed-up and extended version of the R-pakcage psbcGroup. It implements the Bayesian Lasso Cox model (Lee et al., 2011) and the Bayesian Lasso Cox with mandatory variables (Zucknick et al., 2015). Bayesian Lasso Cox models with other shrinkage and group priors (Lee et al., 2015) are to be implemented later on.

Installation

Install the latest released version from CRAN

r install.packages("psbcSpeedUp")

Install the latest development version from GitHub

```r

install.packages("remotes")

remotes::install_github("ocbe-uio/psbcSpeedUp") ```

Examples

Run a Bayesian Lasso Cox with mandatory variables

Data set exampleData consists of six components: survival times t, event status di, covariates x, number of genomics variables p, number of clinical variables q and true effects of covariates beta_true. See ?exampleData for more information of the data.

To run a Bayesian Lasso Cox model for variable selection of the first $p$ genomics variables and inclusion of $q$ mandatory variables, one can specify arguments of the main function psbcSpeedUp() with p = p and q = q. If the arguments p and q are unspecified, the Bayesian Lasso Cox model does variable selection for all covariates, i.e., by default p = ncol(survObj$x) and q = 0.

```r

Load the example dataset

data("exampleData", package = "psbcSpeedUp") p <- exampleData$p q <- exampleData$q survObj <- exampleData[1:3]

Set hyperparameters (see help file for specifying more hyperparameters)

mypriorPara <- list('eta0'=0.02, 'kappa0'=1, 'c0'=2, 'r'=10/9, 'delta'=1e-05, 'lambdaSq'=1, 'sigmaSq'= runif(1, 0.1, 10), 'beta.prop.var'=1, 'beta.clin.var'=1)

run Bayesian Lasso Cox

library("psbcSpeedUp") set.seed(123) fitBayesCox <- psbcSpeedUp(survObj, p=p, q=q, hyperpar=mypriorPara, nIter=1000, burnin=500, outFilePath="/tmp") ```

Running MCMC iterations ... [##################################################] 100% DONE, exiting!

Plot posterior estimates of regression cofficients

The function psbcSpeedUp::plot() can show the posterior mean and 95% credible intervals of regression coefficients.

r plot(fitBayesCox)

Plot time-dependent Brier scores

The function psbcSpeedUp::plotBrier() can show the time-dependent Brier scores based on posterior mean of coefficients or Bayesian model averaging.

r plotBrier(fitBayesCox, times = 80) Null.model Bayesian.Cox IBS 0.2089742 0.109274

Predict survival probabilities and cumulative hazards

The function psbcSpeedUp::predict() can estimate the survival probabilities and cumulative hazards.

r predict(fitBayesCox, type = c("cumhazard", "survival")) ```

observation times cumhazard survival

1: 1 0.264 1.08e-05 1.00e+00

2: 2 0.264 4.50e-05 1.00e+00

3: 3 0.264 5.33e-05 1.00e+00

4: 4 0.264 1.84e-05 1.00e+00

5: 5 0.264 7.22e-05 1.00e+00

---

39996: 196 107.641 2.66e+00 6.97e-02

39997: 197 107.641 5.47e-01 5.79e-01

39998: 198 107.641 5.15e+01 4.41e-23

39999: 199 107.641 4.13e+02 5.72e-180

40000: 200 107.641 2.24e-01 7.99e-01

```

References

Kyu Ha Lee, Sounak Chakraborty, Jianguo Sun (2011). Bayesian variable selection in semiparametric proportional hazards model for high dimensional survival data. The International Journal of Biostatistics, 7:1. DOI: 10.2202/1557-4679.1301.

Kyu Ha Lee, Sounak Chakraborty, Jianguo Sun (2015). Survival prediction and variable selection with simultaneous shrinkage and grouping priors. Statistical Analysis and Data Mining, 8:114-127. DOI:10.1002/sam.11266.

Manuela Zucknick, Maral Saadati, Axel Benner (2015). Nonidentical twins: Comparison of frequentist and Bayesian lasso for Cox models. Biometrical Journal, 57:959-981. DOI:10.1002/bimj.201400160.

Owner

  • Name: Oslo Centre for Biostatistics and Epidemiology
  • Login: ocbe-uio
  • Kind: organization
  • Location: Oslo, Norway

This is where we host some of the scientific software we produce at OCBE, a joint center between the University of Oslo and the Oslo University Hospital.

GitHub Events

Total
Last Year

Issues and Pull Requests

Last synced: 6 months ago

All Time
  • Total issues: 2
  • Total pull requests: 1
  • Average time to close issues: 8 days
  • Average time to close pull requests: 29 minutes
  • Total issue authors: 1
  • Total pull request authors: 1
  • Average comments per issue: 1.0
  • Average comments per pull request: 0.0
  • Merged pull requests: 1
  • Bot issues: 0
  • Bot pull requests: 0
Past Year
  • Issues: 0
  • Pull requests: 0
  • Average time to close issues: N/A
  • Average time to close pull requests: N/A
  • Issue authors: 0
  • Pull request authors: 0
  • Average comments per issue: 0
  • Average comments per pull request: 0
  • Merged pull requests: 0
  • Bot issues: 0
  • Bot pull requests: 0
Top Authors
Issue Authors
  • zhizuio (2)
Pull Request Authors
  • fatihki (2)
Top Labels
Issue Labels
Pull Request Labels

Packages

  • Total packages: 1
  • Total downloads:
    • cran 239 last-month
  • Total dependent packages: 0
  • Total dependent repositories: 0
  • Total versions: 5
  • Total maintainers: 1
cran.r-project.org: psbcSpeedUp

Penalized Semiparametric Bayesian Cox Models

  • Versions: 5
  • Dependent Packages: 0
  • Dependent Repositories: 0
  • Downloads: 239 Last month
Rankings
Dependent packages count: 27.9%
Dependent repos count: 36.8%
Average: 50.3%
Downloads: 86.1%
Maintainers (1)
Last synced: 6 months ago