Science Score: 26.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
○CITATION.cff file
-
✓codemeta.json file
Found codemeta.json file -
○.zenodo.json file
-
✓DOI references
Found 17 DOI reference(s) in README -
○Academic publication links
-
○Academic email domains
-
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (12.0%) to scientific vocabulary
Keywords
Repository
Penalized Semiparametric Bayesian Cox Models
Basic Info
Statistics
- Stars: 3
- Watchers: 1
- Forks: 1
- Open Issues: 0
- Releases: 4
Topics
Metadata Files
README.md
psbcSpeedUp
This is a C++ speed-up and extended version of the R-pakcage psbcGroup. It implements the Bayesian Lasso Cox model (Lee et al., 2011) and the Bayesian Lasso Cox with mandatory variables (Zucknick et al., 2015). Bayesian Lasso Cox models with other shrinkage and group priors (Lee et al., 2015) are to be implemented later on.
Installation
Install the latest released version from CRAN
r
install.packages("psbcSpeedUp")
Install the latest development version from GitHub
```r
install.packages("remotes")
remotes::install_github("ocbe-uio/psbcSpeedUp") ```
Examples
Run a Bayesian Lasso Cox with mandatory variables
Data set exampleData consists of six components:
survival times t,
event status di,
covariates x,
number of genomics variables p,
number of clinical variables q and
true effects of covariates beta_true.
See ?exampleData for more information of the data.
To run a Bayesian Lasso Cox model for variable selection of the first $p$ genomics variables and inclusion of $q$ mandatory variables, one can specify arguments of the main function psbcSpeedUp() with p = p and q = q.
If the arguments p and q are unspecified, the Bayesian Lasso Cox model does variable selection for all covariates, i.e., by default p = ncol(survObj$x) and q = 0.
```r
Load the example dataset
data("exampleData", package = "psbcSpeedUp") p <- exampleData$p q <- exampleData$q survObj <- exampleData[1:3]
Set hyperparameters (see help file for specifying more hyperparameters)
mypriorPara <- list('eta0'=0.02, 'kappa0'=1, 'c0'=2, 'r'=10/9, 'delta'=1e-05, 'lambdaSq'=1, 'sigmaSq'= runif(1, 0.1, 10), 'beta.prop.var'=1, 'beta.clin.var'=1)
run Bayesian Lasso Cox
library("psbcSpeedUp") set.seed(123) fitBayesCox <- psbcSpeedUp(survObj, p=p, q=q, hyperpar=mypriorPara, nIter=1000, burnin=500, outFilePath="/tmp") ```
Running MCMC iterations ...
[##################################################] 100%
DONE, exiting!
Plot posterior estimates of regression cofficients
The function psbcSpeedUp::plot() can show the posterior mean and 95% credible intervals of regression coefficients.
r
plot(fitBayesCox)

Plot time-dependent Brier scores
The function psbcSpeedUp::plotBrier() can show the time-dependent Brier scores based on posterior mean of coefficients or Bayesian model averaging.
r
plotBrier(fitBayesCox, times = 80)
Null.model Bayesian.Cox
IBS 0.2089742 0.109274

Predict survival probabilities and cumulative hazards
The function psbcSpeedUp::predict() can estimate the survival probabilities and cumulative hazards.
r
predict(fitBayesCox, type = c("cumhazard", "survival"))
```
observation times cumhazard survival
1: 1 0.264 1.08e-05 1.00e+00
2: 2 0.264 4.50e-05 1.00e+00
3: 3 0.264 5.33e-05 1.00e+00
4: 4 0.264 1.84e-05 1.00e+00
5: 5 0.264 7.22e-05 1.00e+00
---
39996: 196 107.641 2.66e+00 6.97e-02
39997: 197 107.641 5.47e-01 5.79e-01
39998: 198 107.641 5.15e+01 4.41e-23
39999: 199 107.641 4.13e+02 5.72e-180
40000: 200 107.641 2.24e-01 7.99e-01
```
References
Kyu Ha Lee, Sounak Chakraborty, Jianguo Sun (2011). Bayesian variable selection in semiparametric proportional hazards model for high dimensional survival data. The International Journal of Biostatistics, 7:1. DOI: 10.2202/1557-4679.1301.
Kyu Ha Lee, Sounak Chakraborty, Jianguo Sun (2015). Survival prediction and variable selection with simultaneous shrinkage and grouping priors. Statistical Analysis and Data Mining, 8:114-127. DOI:10.1002/sam.11266.
Manuela Zucknick, Maral Saadati, Axel Benner (2015). Nonidentical twins: Comparison of frequentist and Bayesian lasso for Cox models. Biometrical Journal, 57:959-981. DOI:10.1002/bimj.201400160.
Owner
- Name: Oslo Centre for Biostatistics and Epidemiology
- Login: ocbe-uio
- Kind: organization
- Location: Oslo, Norway
- Website: https://www.med.uio.no/imb/english/research/centres/ocbe/
- Twitter: OCBE_UniOslo
- Repositories: 22
- Profile: https://github.com/ocbe-uio
This is where we host some of the scientific software we produce at OCBE, a joint center between the University of Oslo and the Oslo University Hospital.
GitHub Events
Total
Last Year
Issues and Pull Requests
Last synced: 6 months ago
All Time
- Total issues: 2
- Total pull requests: 1
- Average time to close issues: 8 days
- Average time to close pull requests: 29 minutes
- Total issue authors: 1
- Total pull request authors: 1
- Average comments per issue: 1.0
- Average comments per pull request: 0.0
- Merged pull requests: 1
- Bot issues: 0
- Bot pull requests: 0
Past Year
- Issues: 0
- Pull requests: 0
- Average time to close issues: N/A
- Average time to close pull requests: N/A
- Issue authors: 0
- Pull request authors: 0
- Average comments per issue: 0
- Average comments per pull request: 0
- Merged pull requests: 0
- Bot issues: 0
- Bot pull requests: 0
Top Authors
Issue Authors
- zhizuio (2)
Pull Request Authors
- fatihki (2)
Top Labels
Issue Labels
Pull Request Labels
Packages
- Total packages: 1
-
Total downloads:
- cran 239 last-month
- Total dependent packages: 0
- Total dependent repositories: 0
- Total versions: 5
- Total maintainers: 1
cran.r-project.org: psbcSpeedUp
Penalized Semiparametric Bayesian Cox Models
- Homepage: https://github.com/ocbe-uio/psbcSpeedUp
- Documentation: http://cran.r-project.org/web/packages/psbcSpeedUp/psbcSpeedUp.pdf
- License: GPL-3
-
Latest release: 2.0.7
published over 1 year ago