singleCellHaystack

Finding surprising needles (=genes) in haystacks (=single cell transcriptome data).

https://github.com/alexisvdb/singlecellhaystack

Science Score: 26.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
  • DOI references
    Found 14 DOI reference(s) in README
  • Academic publication links
  • Academic email domains
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (15.2%) to scientific vocabulary

Keywords

bioinformatics cite-seq pseudotime r scatac-seq single-cell spatial-proteomics spatial-transcriptomics transcriptomics
Last synced: 6 months ago · JSON representation

Repository

Finding surprising needles (=genes) in haystacks (=single cell transcriptome data).

Basic Info
Statistics
  • Stars: 85
  • Watchers: 5
  • Forks: 9
  • Open Issues: 0
  • Releases: 0
Topics
bioinformatics cite-seq pseudotime r scatac-seq single-cell spatial-proteomics spatial-transcriptomics transcriptomics
Created about 7 years ago · Last pushed over 1 year ago
Metadata Files
Readme Changelog License

README.Rmd

---
output: github_document
---



```{r setup, include = FALSE}
knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>",
  fig.path = "man/figures/README-",
  out.width = "100%"
)
```

## singleCellHaystack


  [![R-CMD-check](https://github.com/alexisvdb/singleCellHaystack/actions/workflows/R-CMD-check.yaml/badge.svg)](https://github.com/alexisvdb/singleCellHaystack/actions/workflows/R-CMD-check.yaml)
  [![CRAN_Status_Badge](https://www.r-pkg.org/badges/version/singleCellHaystack)](https://cran.r-project.org/package=singleCellHaystack)
  [![CRAN Downloads](https://cranlogs.r-pkg.org/badges/singleCellHaystack)](https://cran.r-project.org/package=singleCellHaystack)
  [![CRAN Downloads](https://cranlogs.r-pkg.org/badges/grand-total/singleCellHaystack)](https://cran.r-project.org/package=singleCellHaystack)


:warning: We updated `singleCellHaystack` in late 2022. The master branch on GitHub is now the updated version 1.0, described [here](https://doi.org/10.1038/s41598-023-38965-2). The version on CRAN is also this updated version. For the older version described [here](https://doi.org/10.1038/s41467-020-17900-3), please use branch "binary". :warning:

`singleCellHaystack` is a package for predicting differentially active features (e.g. genes, proteins, chromatin accessibility) in single-cell and spatial genomics data. While `singleCellHaystack` originally focused on the prediction of differentially expressed genes (DEGs; see [here](https://doi.org/10.1038/s41467-020-17900-3)), we have updated the method and made it more generally applicable (see [Sci Rep](https://doi.org/10.1038/s41598-023-38965-2)). It can now also be used for finding differentially accessible genomic regions in scATAC-seq, DEGs along a trajectory, spatial DEGs, or any other features with non-random levels of activity inside any input space (1D, 2D, or >2D). It does so without relying on clustering of samples into arbitrary clusters. `singleCellHaystack` uses Kullback-Leibler Divergence to find features that have patterns of activity in subsets of samples that are non-randomly positioned inside any input space.

For the Python implementation, please see [here](https://github.com/ddiez/singleCellHaystack-py).

## Citations

- Our manuscript describing the updated, more generally applicable version of `singleCellHaystack` has been published in [Scientific Reports](https://doi.org/10.1038/s41598-023-38965-2).

- Our manuscript describing the original implementation of `singleCellHaystack` ([version 0.3.4](https://github.com/alexisvdb/singleCellHaystack/tree/binary)) has been published in [Nature Communications](https://doi.org/10.1038/s41467-020-17900-3).

If you use `singleCellHaystack` in your research please cite our work using:

```{r echo=FALSE, results='asis', comment=""}
cit <- citation("singleCellHaystack")
print(cit, style = "html")
```


## Documentation and Demo
:warning: We updated this documentation to reflect the new version 1.0 :warning:

Our [documentation](https://alexisvdb.github.io/singleCellHaystack/) includes a few example applications showing how to use our package:

- [Toy example](https://alexisvdb.github.io/singleCellHaystack/articles/a01_toy_example.html)
- [Single-cell RNA-seq](https://alexisvdb.github.io/singleCellHaystack/articles/examples/a02_example_scRNAseq.html)
- [Spatial transcriptomics using Visium](https://alexisvdb.github.io/singleCellHaystack/articles/examples/a03_example_spatial_visium.html)
- [Spatial transcriptomics using Slide-seq V2](https://alexisvdb.github.io/singleCellHaystack/articles/examples/a04_example_spatial_slideseqV2.html)
- [MOCA 100k cells](https://alexisvdb.github.io/singleCellHaystack/articles/examples/a05_moca_100k.html)
- [Predicting DEGs along a trajectory](https://alexisvdb.github.io/singleCellHaystack/articles/examples/a06_pseudotime.html)
- [Analysis of gene set activities](https://alexisvdb.github.io/singleCellHaystack/articles/examples/a07_gene_sets.html)
- Anything else to add? Please let us know!



## Installation

You can install `singleCellHaystack` from [CRAN](https://CRAN.R-project.org/package=singleCellHaystack) with:
``` r
install.packages("singleCellHaystack")
```

Or, you can install `singleCellHaystack` from the GitHub repository as shown below. Typical installation times should be less than 1 minute.

``` r
require(remotes)
remotes::install_github("alexisvdb/singleCellHaystack")
```

For the old binary version of `singleCellHaystack` as described [here](https://doi.org/10.1038/s41467-020-17900-3), you can use the binary branch on GitHub:

``` r
require(remotes)
remotes::install_github("alexisvdb/singleCellHaystack@binary")
```


## System Requirements

### Hardware Requirements

`singleCellHaystack` requires only a standard computer with sufficient RAM to support running R or RStudio. Memory requirements depend on the size of the input dataset.

### Software Requirements

This package has been tested on Windows (Windows 10 & 11), macOS (Mojave 10.14.1 and Catalina 10.15.1), and Linux (CentOS 7.9 and Ubuntu 19.10).

`singleCellHaystack` depends on the following packages: Matrix (1.5-1), splines (4.1.3), ggplot2 (3.3.6) and reshape2 (1.4.4).

Owner

  • Name: Alexis Vandenbon
  • Login: alexisvdb
  • Kind: user
  • Location: Kyoto

Computational biologist

GitHub Events

Total
  • Watch event: 5
Last Year
  • Watch event: 5

Issues and Pull Requests

Last synced: 7 months ago

All Time
  • Total issues: 8
  • Total pull requests: 16
  • Average time to close issues: about 2 months
  • Average time to close pull requests: about 1 hour
  • Total issue authors: 5
  • Total pull request authors: 3
  • Average comments per issue: 5.63
  • Average comments per pull request: 0.0
  • Merged pull requests: 15
  • Bot issues: 0
  • Bot pull requests: 0
Past Year
  • Issues: 0
  • Pull requests: 0
  • Average time to close issues: N/A
  • Average time to close pull requests: N/A
  • Issue authors: 0
  • Pull request authors: 0
  • Average comments per issue: 0
  • Average comments per pull request: 0
  • Merged pull requests: 0
  • Bot issues: 0
  • Bot pull requests: 0
Top Authors
Issue Authors
  • davemcg (3)
  • ddiez (2)
  • fbnrst (1)
  • alexisvdb (1)
  • RuiGao-1223 (1)
Pull Request Authors
  • ddiez (10)
  • alexisvdb (5)
  • olivroy (2)
Top Labels
Issue Labels
documentation (1)
Pull Request Labels

Packages

  • Total packages: 1
  • Total downloads:
    • cran 225 last-month
  • Total docker downloads: 21,950
  • Total dependent packages: 0
  • Total dependent repositories: 1
  • Total versions: 5
  • Total maintainers: 1
cran.r-project.org: singleCellHaystack

A Universal Differential Expression Prediction Tool for Single-Cell and Spatial Genomics Data

  • Versions: 5
  • Dependent Packages: 0
  • Dependent Repositories: 1
  • Downloads: 225 Last month
  • Docker Downloads: 21,950
Rankings
Docker downloads count: 0.6%
Average: 23.0%
Dependent repos count: 23.9%
Dependent packages count: 28.8%
Downloads: 38.7%
Maintainers (1)
Last synced: 6 months ago

Dependencies

DESCRIPTION cran
  • Matrix * imports
  • ggplot2 * imports
  • methods * imports
  • reshape2 * imports
  • splines * imports
  • Rtsne * suggests
  • SeuratObject * suggests
  • SingleCellExperiment * suggests
  • SummarizedExperiment * suggests
  • cowplot * suggests
  • knitr * suggests
  • rmarkdown * suggests
  • testthat * suggests
  • wrswoR * suggests
.github/workflows/R-CMD-check.yaml actions
  • actions/checkout v2 composite
  • r-lib/actions/check-r-package v2 composite
  • r-lib/actions/setup-pandoc v2 composite
  • r-lib/actions/setup-r v2 composite
  • r-lib/actions/setup-r-dependencies v2 composite