bayesianvars
MCMC estimation of Bayesian Vectorautoregressions
Science Score: 26.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
○CITATION.cff file
-
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
○DOI references
-
○Academic publication links
-
○Academic email domains
-
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (13.5%) to scientific vocabulary
Keywords
Repository
MCMC estimation of Bayesian Vectorautoregressions
Basic Info
- Host: GitHub
- Owner: luisgruber
- License: gpl-3.0
- Language: R
- Default Branch: main
- Homepage: https://luisgruber.github.io/bayesianVARs/
- Size: 13.5 MB
Statistics
- Stars: 9
- Watchers: 2
- Forks: 5
- Open Issues: 2
- Releases: 6
Topics
Metadata Files
README.md
bayesianVARs 
Estimation of Bayesian vectorautoregressions with/without stochastic volatility.
Implements several modern hierarchical shrinkage priors, amongst them Dirichlet-Laplace prior (DL), hierarchical Minnesota prior (HM), Horseshoe prior (HS), normal-gamma prior (NG), $R^2$-induced-Dirichlet-decomposition prior (R2D2) and stochastic search variable selection prior (SSVS).
Concerning the error-term, the user can either specify an order-invariant factor structure or an order-variant cholesky structure.
Installation
Install CRAN version:
r
install.packages("bayesianVARs")
Install latest development version directly from GitHub:
r
devtools::install_github("luisgruber/bayesianVARs")
Usage
The main workhorse to conduct Bayesian inference for
vectorautoregression models in this package is the function bvar().
Some features:
- Prediction, plotting, extraction of model parameters and extraction of
fitted values with the usual generic functions
predict(),plot(),coef(),vcov()andfitted(). - Configure prior distributions with helper functions
specify_prior_phi()andspecify_prior_sigma().
Demonstration
``` r set.seed(537)
load package
library(bayesianVARs)
Load data
traindata <-100 * usmacrogrowth[1:237,c("GDPC1", "PCECC96", "GPDIC1", "AWHMAN", "GDPCTPI", "CES2000000008x", "FEDFUNDS", "GS10", "EXUSUKx", "S&P 500")] testdata <-100 * usmacrogrowth[238:241,c("GDPC1", "PCECC96", "GPDIC1", "AWHMAN", "GDPCTPI", "CES2000000008x", "FEDFUNDS", "GS10", "EXUSUKx", "S&P 500")]
Estimate model using default prior settings
mod <- bvar(traindata, lags = 2L, draws = 2000, burnin = 1000, svkeep = "all")
Out of sample prediction and log-predictive-likelihood evaluation
pred <- predict(mod, ahead = 1:4, LPL = TRUE, Yobs = testdata)
Visualize in-sample fit plus out-of-sample prediction intervals
plot(mod, predictions = pred) ```
Documentation
bayesianVARs - Shrinkage Priors for Bayesian Vectorautoregressions in R
Owner
- Login: luisgruber
- Kind: user
- Repositories: 1
- Profile: https://github.com/luisgruber
GitHub Events
Total
- Release event: 1
- Watch event: 3
- Push event: 5
- Pull request event: 1
- Create event: 1
Last Year
- Release event: 1
- Watch event: 3
- Push event: 5
- Pull request event: 1
- Create event: 1
Packages
- Total packages: 1
-
Total downloads:
- cran 702 last-month
- Total dependent packages: 0
- Total dependent repositories: 0
- Total versions: 6
- Total maintainers: 1
cran.r-project.org: bayesianVARs
MCMC Estimation of Bayesian Vectorautoregressions
- Homepage: https://github.com/luisgruber/bayesianVARs
- Documentation: http://cran.r-project.org/web/packages/bayesianVARs/bayesianVARs.pdf
- License: GPL (≥ 3)
-
Latest release: 0.1.5
published over 1 year ago
Rankings
Maintainers (1)
Dependencies
- actions/checkout v3 composite
- r-lib/actions/check-r-package v2 composite
- r-lib/actions/setup-pandoc v2 composite
- r-lib/actions/setup-r v2 composite
- r-lib/actions/setup-r-dependencies v2 composite
- R >= 2.10 depends
- GIGrvg * imports
- MASS * imports
- Rcpp * imports
- colorspace * imports
- mvtnorm * imports
- stats * imports
- stochvol * imports
- JamesIves/github-pages-deploy-action v4.4.1 composite
- actions/checkout v3 composite
- r-lib/actions/setup-pandoc v2 composite
- r-lib/actions/setup-r v2 composite
- r-lib/actions/setup-r-dependencies v2 composite
- r-lib/actions/setup-tinytex v2 composite