Science Score: 39.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
○CITATION.cff file
-
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
✓DOI references
Found 16 DOI reference(s) in README -
○Academic publication links
-
○Committers with academic emails
-
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (16.8%) to scientific vocabulary
Keywords
causal-analysis
causal-discovery
causal-inference
chaos
cpp17
empirical-dynamic-modeling
r
temporal-causal-discovery
temporal-causality
time-series
Last synced: 6 months ago
·
JSON representation
Repository
Temporal Empirical Dynamic Modeling
Basic Info
- Host: GitHub
- Owner: stscl
- Language: C++
- Default Branch: main
- Homepage: https://stscl.github.io/tEDM/
- Size: 6.77 MB
Statistics
- Stars: 10
- Watchers: 0
- Forks: 1
- Open Issues: 0
- Releases: 2
Topics
causal-analysis
causal-discovery
causal-inference
chaos
cpp17
empirical-dynamic-modeling
r
temporal-causal-discovery
temporal-causality
time-series
Created 8 months ago
· Last pushed 6 months ago
Metadata Files
Readme
Changelog
README.Rmd
---
output: github_document
---
```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "##",
fig.path = "man/figures/README-",
out.width = "100%"
)
```
# tEDM
[](https://CRAN.R-project.org/package=tEDM)
[](https://CRAN.R-project.org/package=tEDM)
[](https://cran.r-project.org/web/checks/check_results_tEDM.html)
[](https://CRAN.R-project.org/package=tEDM)
[](https://CRAN.R-project.org/package=tEDM)
[](http://www.gnu.org/licenses/gpl-3.0.html)
[](https://github.com/stscl/tEDM/actions/workflows/R-CMD-check.yaml)
[](https://lifecycle.r-lib.org/articles/stages.html#stable)
[](https://stscl.r-universe.dev/tEDM)
_**T**emporal **E**mpirical **D**ynamic **M**odeling_
## Overview
The `tEDM` package provides a suite of tools for exploring and quantifying causality in time series using Empirical Dynamic Modeling (EDM). It is particularly designed to detect, differentiate, and reconstruct causal dynamics in systems where traditional assumptions of linearity and stationarity may not hold.
The package implements four fundamental EDM-based methods:
- [**Convergent Cross Mapping (CCM)**][1] – for detecting nonlinear causal relationships in time series.
- [**Partial Cross Mapping (PCM)**][2] – for disentangling direct from indirect causal influences.
- [**Cross Mapping Cardinality (CMC)**][3] – for identifying time-varying or state-dependent causal linkages.
- [**Multispatial Convergent Cross Mapping (MultispatialCCM)**][4] – for reconstructing causal dynamics from replicated time series across multiple spatial locations.
> *Refer to the package documentation for more detailed information.*
## Installation
- Install from [CRAN](https://CRAN.R-project.org/package=tEDM) with:
``` r
install.packages("tEDM", dep = TRUE)
```
- Install binary version from [R-universe](https://stscl.r-universe.dev/tEDM) with:
``` r
install.packages("tEDM",
repos = c("https://stscl.r-universe.dev",
"https://cloud.r-project.org"),
dep = TRUE)
```
- Install from source code on [GitHub](https://github.com/stscl/tEDM) with:
```r
if (!requireNamespace("devtools")) {
install.packages("devtools")
}
devtools::install_github("stscl/tEDM",
#build_vignettes = TRUE,
dep = TRUE)
```
## Reference
Sugihara, G., May, R., Ye, H., Hsieh, C., Deyle, E., Fogarty, M., Munch, S., 2012. Detecting Causality in Complex Ecosystems. Science 338, 496–500. [https://doi.org/10.1126/science.1227079][1].
Leng, S., Ma, H., Kurths, J., Lai, Y.-C., Lin, W., Aihara, K., Chen, L., 2020. Partial cross mapping eliminates indirect causal influences. Nature Communications 11. [https://doi.org/10.1038/s41467-020-16238-0][2].
Tao, P., Wang, Q., Shi, J., Hao, X., Liu, X., Min, B., Zhang, Y., Li, C., Cui, H., Chen, L., 2023. Detecting dynamical causality by intersection cardinal concavity. Fundamental Research. [https://doi.org/10.1016/j.fmre.2023.01.007][3].
Clark, A.T., Ye, H., Isbell, F., Deyle, E.R., Cowles, J., Tilman, G.D., Sugihara, G., 2015. Spatial convergent cross mapping to detect causal relationships from short time series. Ecology 96, 1174–1181. [https://doi.org/10.1890/14-1479.1][4].
[1]: https://doi.org/10.1126/science.1227079
[2]: https://doi.org/10.1038/s41467-020-16238-0
[3]: https://doi.org/10.1016/j.fmre.2023.01.007
[4]: https://doi.org/10.1890/14-1479.1
Owner
- Name: Spatiotemporal statistical computing liberalization community
- Login: stscl
- Kind: organization
- Email: lyu.geosocial@gmail.com
- Location: China
- Repositories: 3
- Profile: https://github.com/stscl
GitHub Events
Total
- Create event: 3
- Issues event: 2
- Release event: 2
- Watch event: 8
- Push event: 153
- Pull request event: 156
Last Year
- Create event: 3
- Issues event: 2
- Release event: 2
- Watch event: 8
- Push event: 153
- Pull request event: 156
Issues and Pull Requests
Last synced: 6 months ago
All Time
- Total issues: 1
- Total pull requests: 128
- Average time to close issues: about 1 hour
- Average time to close pull requests: 15 minutes
- Total issue authors: 1
- Total pull request authors: 1
- Average comments per issue: 0.0
- Average comments per pull request: 0.0
- Merged pull requests: 101
- Bot issues: 0
- Bot pull requests: 0
Past Year
- Issues: 1
- Pull requests: 128
- Average time to close issues: about 1 hour
- Average time to close pull requests: 15 minutes
- Issue authors: 1
- Pull request authors: 1
- Average comments per issue: 0.0
- Average comments per pull request: 0.0
- Merged pull requests: 101
- Bot issues: 0
- Bot pull requests: 0
Top Authors
Issue Authors
- SpatLyu (1)
Pull Request Authors
- SpatLyu (128)
Top Labels
Issue Labels
documentation (1)
enhancement (1)
Pull Request Labels
Packages
- Total packages: 1
-
Total downloads:
- cran 235 last-month
- Total dependent packages: 0
- Total dependent repositories: 0
- Total versions: 2
- Total maintainers: 1
cran.r-project.org: tEDM
Temporal Empirical Dynamic Modeling
- Homepage: https://stscl.github.io/tEDM/
- Documentation: http://cran.r-project.org/web/packages/tEDM/tEDM.pdf
- License: GPL-3
-
Latest release: 1.1
published 6 months ago
Rankings
Dependent packages count: 25.9%
Dependent repos count: 31.9%
Average: 47.8%
Downloads: 85.7%
Maintainers (1)
Last synced:
6 months ago
Dependencies
DESCRIPTION
cran
- R >= 4.1.0 depends
- dplyr * imports
- ggplot2 * imports
- methods * imports
- Rcpp * suggests
- RcppArmadillo * suggests
- RcppThread * suggests
- plot3D * suggests
- readr * suggests
.github/workflows/R-CMD-check.yaml
actions
- actions/checkout v4 composite
- r-lib/actions/check-r-package v2 composite
- r-lib/actions/setup-pandoc v2 composite
- r-lib/actions/setup-r v2 composite
- r-lib/actions/setup-r-dependencies v2 composite
.github/workflows/pkgdown.yaml
actions
- JamesIves/github-pages-deploy-action v4.5.0 composite
- actions/checkout v4 composite
- r-lib/actions/setup-pandoc v2 composite
- r-lib/actions/setup-r v2 composite
- r-lib/actions/setup-r-dependencies v2 composite
.github/workflows/rhub.yaml
actions
- r-hub/actions/checkout v1 composite
- r-hub/actions/platform-info v1 composite
- r-hub/actions/run-check v1 composite
- r-hub/actions/setup v1 composite
- r-hub/actions/setup-deps v1 composite
- r-hub/actions/setup-r v1 composite