tedm

Temporal Empirical Dynamic Modeling

https://github.com/stscl/tedm

Science Score: 39.0%

This score indicates how likely this project is to be science-related based on various indicators:

  • CITATION.cff file
  • codemeta.json file
    Found codemeta.json file
  • .zenodo.json file
    Found .zenodo.json file
  • DOI references
    Found 16 DOI reference(s) in README
  • Academic publication links
  • Committers with academic emails
  • Institutional organization owner
  • JOSS paper metadata
  • Scientific vocabulary similarity
    Low similarity (16.8%) to scientific vocabulary

Keywords

causal-analysis causal-discovery causal-inference chaos cpp17 empirical-dynamic-modeling r temporal-causal-discovery temporal-causality time-series
Last synced: 6 months ago · JSON representation

Repository

Temporal Empirical Dynamic Modeling

Basic Info
Statistics
  • Stars: 10
  • Watchers: 0
  • Forks: 1
  • Open Issues: 0
  • Releases: 2
Topics
causal-analysis causal-discovery causal-inference chaos cpp17 empirical-dynamic-modeling r temporal-causal-discovery temporal-causality time-series
Created 8 months ago · Last pushed 6 months ago
Metadata Files
Readme Changelog

README.Rmd

---
output: github_document
---



```{r, include = FALSE}
knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "##",
  fig.path = "man/figures/README-",
  out.width = "100%"
)
```

# tEDM tEDM website: https://stscl.github.io/tEDM/



[![CRAN](https://www.r-pkg.org/badges/version/tEDM)](https://CRAN.R-project.org/package=tEDM)
[![CRAN Release](https://www.r-pkg.org/badges/last-release/tEDM)](https://CRAN.R-project.org/package=tEDM)
[![CRAN Checks](https://badges.cranchecks.info/worst/tEDM.svg)](https://cran.r-project.org/web/checks/check_results_tEDM.html)
[![Downloads_all](https://badgen.net/cran/dt/tEDM?color=orange)](https://CRAN.R-project.org/package=tEDM)
[![Downloads_month](https://cranlogs.r-pkg.org/badges/tEDM)](https://CRAN.R-project.org/package=tEDM)
[![License](https://img.shields.io/badge/license-GPL--3-brightgreen.svg?style=flat)](http://www.gnu.org/licenses/gpl-3.0.html)
[![R-CMD-check](https://github.com/stscl/tEDM/actions/workflows/R-CMD-check.yaml/badge.svg)](https://github.com/stscl/tEDM/actions/workflows/R-CMD-check.yaml)
[![Lifecycle: stable](https://img.shields.io/badge/lifecycle-stable-20b2aa.svg)](https://lifecycle.r-lib.org/articles/stages.html#stable)
[![R-universe](https://stscl.r-universe.dev/badges/tEDM?color=cyan)](https://stscl.r-universe.dev/tEDM)



_**T**emporal **E**mpirical **D**ynamic **M**odeling_

## Overview

The `tEDM` package provides a suite of tools for exploring and quantifying causality in time series using Empirical Dynamic Modeling (EDM). It is particularly designed to detect, differentiate, and reconstruct causal dynamics in systems where traditional assumptions of linearity and stationarity may not hold.

The package implements four fundamental EDM-based methods:

- [**Convergent Cross Mapping (CCM)**][1] – for detecting nonlinear causal relationships in time series.

- [**Partial Cross Mapping (PCM)**][2] – for disentangling direct from indirect causal influences.

- [**Cross Mapping Cardinality (CMC)**][3] – for identifying time-varying or state-dependent causal linkages.

- [**Multispatial Convergent Cross Mapping (MultispatialCCM)**][4] – for reconstructing causal dynamics from replicated time series across multiple spatial locations.

> *Refer to the package documentation  for more detailed information.*

## Installation

- Install from [CRAN](https://CRAN.R-project.org/package=tEDM) with:

``` r
install.packages("tEDM", dep = TRUE)
```

- Install binary version from [R-universe](https://stscl.r-universe.dev/tEDM) with:

``` r
install.packages("tEDM",
                 repos = c("https://stscl.r-universe.dev",
                           "https://cloud.r-project.org"),
                 dep = TRUE)
```

- Install from source code on [GitHub](https://github.com/stscl/tEDM) with:

```r
if (!requireNamespace("devtools")) {
    install.packages("devtools")
}
devtools::install_github("stscl/tEDM",
                         #build_vignettes = TRUE,
                         dep = TRUE)
```

## Reference

Sugihara, G., May, R., Ye, H., Hsieh, C., Deyle, E., Fogarty, M., Munch, S., 2012. Detecting Causality in Complex Ecosystems. Science 338, 496–500. [https://doi.org/10.1126/science.1227079][1].

Leng, S., Ma, H., Kurths, J., Lai, Y.-C., Lin, W., Aihara, K., Chen, L., 2020. Partial cross mapping eliminates indirect causal influences. Nature Communications 11. [https://doi.org/10.1038/s41467-020-16238-0][2].

Tao, P., Wang, Q., Shi, J., Hao, X., Liu, X., Min, B., Zhang, Y., Li, C., Cui, H., Chen, L., 2023. Detecting dynamical causality by intersection cardinal concavity. Fundamental Research. [https://doi.org/10.1016/j.fmre.2023.01.007][3].

Clark, A.T., Ye, H., Isbell, F., Deyle, E.R., Cowles, J., Tilman, G.D., Sugihara, G., 2015. Spatial convergent cross mapping to detect causal relationships from short time series. Ecology 96, 1174–1181. [https://doi.org/10.1890/14-1479.1][4].

  

[1]: https://doi.org/10.1126/science.1227079
[2]: https://doi.org/10.1038/s41467-020-16238-0
[3]: https://doi.org/10.1016/j.fmre.2023.01.007
[4]: https://doi.org/10.1890/14-1479.1

Owner

  • Name: Spatiotemporal statistical computing liberalization community
  • Login: stscl
  • Kind: organization
  • Email: lyu.geosocial@gmail.com
  • Location: China

GitHub Events

Total
  • Create event: 3
  • Issues event: 2
  • Release event: 2
  • Watch event: 8
  • Push event: 153
  • Pull request event: 156
Last Year
  • Create event: 3
  • Issues event: 2
  • Release event: 2
  • Watch event: 8
  • Push event: 153
  • Pull request event: 156

Committers

Last synced: 8 months ago

All Time
  • Total Commits: 118
  • Total Committers: 1
  • Avg Commits per committer: 118.0
  • Development Distribution Score (DDS): 0.0
Past Year
  • Commits: 118
  • Committers: 1
  • Avg Commits per committer: 118.0
  • Development Distribution Score (DDS): 0.0
Top Committers
Name Email Commits
SpatLyu l****l@g****m 118

Issues and Pull Requests

Last synced: 6 months ago

All Time
  • Total issues: 1
  • Total pull requests: 128
  • Average time to close issues: about 1 hour
  • Average time to close pull requests: 15 minutes
  • Total issue authors: 1
  • Total pull request authors: 1
  • Average comments per issue: 0.0
  • Average comments per pull request: 0.0
  • Merged pull requests: 101
  • Bot issues: 0
  • Bot pull requests: 0
Past Year
  • Issues: 1
  • Pull requests: 128
  • Average time to close issues: about 1 hour
  • Average time to close pull requests: 15 minutes
  • Issue authors: 1
  • Pull request authors: 1
  • Average comments per issue: 0.0
  • Average comments per pull request: 0.0
  • Merged pull requests: 101
  • Bot issues: 0
  • Bot pull requests: 0
Top Authors
Issue Authors
  • SpatLyu (1)
Pull Request Authors
  • SpatLyu (128)
Top Labels
Issue Labels
documentation (1) enhancement (1)
Pull Request Labels

Packages

  • Total packages: 1
  • Total downloads:
    • cran 235 last-month
  • Total dependent packages: 0
  • Total dependent repositories: 0
  • Total versions: 2
  • Total maintainers: 1
cran.r-project.org: tEDM

Temporal Empirical Dynamic Modeling

  • Versions: 2
  • Dependent Packages: 0
  • Dependent Repositories: 0
  • Downloads: 235 Last month
Rankings
Dependent packages count: 25.9%
Dependent repos count: 31.9%
Average: 47.8%
Downloads: 85.7%
Maintainers (1)
Last synced: 6 months ago

Dependencies

DESCRIPTION cran
  • R >= 4.1.0 depends
  • dplyr * imports
  • ggplot2 * imports
  • methods * imports
  • Rcpp * suggests
  • RcppArmadillo * suggests
  • RcppThread * suggests
  • plot3D * suggests
  • readr * suggests
.github/workflows/R-CMD-check.yaml actions
  • actions/checkout v4 composite
  • r-lib/actions/check-r-package v2 composite
  • r-lib/actions/setup-pandoc v2 composite
  • r-lib/actions/setup-r v2 composite
  • r-lib/actions/setup-r-dependencies v2 composite
.github/workflows/pkgdown.yaml actions
  • JamesIves/github-pages-deploy-action v4.5.0 composite
  • actions/checkout v4 composite
  • r-lib/actions/setup-pandoc v2 composite
  • r-lib/actions/setup-r v2 composite
  • r-lib/actions/setup-r-dependencies v2 composite
.github/workflows/rhub.yaml actions
  • r-hub/actions/checkout v1 composite
  • r-hub/actions/platform-info v1 composite
  • r-hub/actions/run-check v1 composite
  • r-hub/actions/setup v1 composite
  • r-hub/actions/setup-deps v1 composite
  • r-hub/actions/setup-r v1 composite