Science Score: 26.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
○CITATION.cff file
-
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
○DOI references
-
○Academic publication links
-
○Committers with academic emails
-
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (18.4%) to scientific vocabulary
Keywords
cran
parallel
r
rselenium
web-scraping
Last synced: 6 months ago
·
JSON representation
Repository
parallel execution of RSelenium
Basic Info
Statistics
- Stars: 14
- Watchers: 3
- Forks: 3
- Open Issues: 0
- Releases: 4
Topics
cran
parallel
r
rselenium
web-scraping
Created about 5 years ago
· Last pushed 10 months ago
Metadata Files
Readme
Changelog
License
README.Rmd
---
output: github_document
---
```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "man/figures/README-",
out.width = "100%"
)
```
# parsel
[](https://CRAN.R-project.org/package=parsel)
[](https://opensource.org/license/mit/)

`parsel` is a framework for parallelized dynamic web-scraping using `RSelenium`. Leveraging parallel processing, it allows you to run any `RSelenium` web-scraping routine on multiple browser instances simultaneously, thus greatly increasing the efficiency of your scraping. `parsel` utilizes chunked input processing as well as error catching and logging, to ensure seamless execution of your scraping routine and minimal data loss, even in the presence of unforeseen `RSelenium` errors.
`parsel` additionally provides convenient wrapper functions around `RSelenium` methods, that allow you to quickly generate safe scraping code with minimal coding on your end.
## Installation
``` r
# Install parsel from CRAN
install.packages("parsel")
# Or the development version from GitHub:
# install.packages("devtools")
devtools::install_github("till-tietz/parsel")
```
## Usage
### Parallel Scraping
The following example will hopefully serve to illustrate the functionality and ideas behind how `parsel` operates.
We'll set up the following scraping job:
1. navigate to a random Wikipedia article
2. retrieve its title
3. navigate to the first linked page on the article
4. retrieve the linked page's title and first section
and parallelize it with `parsel`.
`parsel` requires two things:
1. a scraping function defining the actions to be executed in each `RSelenium` instance. Actions to be executed in each browser instance should be written in the conventional `RSelenium` syntax with `remDr$` specifying the remote driver.
2. some input `x` to those actions (e.g. search terms to be entered in search boxes or links to navigate to etc.)
```{r, eval = FALSE}
library(RSelenium)
library(parsel)
#let's define our scraping function input
#we want to run our function 4 times and we want it to start on the wikipedia main page each time
input <- rep("https://de.wikipedia.org",4)
#let's define our scraping function
get_wiki_text <- function(x){
input_i <- x
#navigate to input page (i.e wikipedia)
remDr$navigate(input_i)
#find and click random article
rand_art <- remDr$findElement(using = "id", "n-randompage")$clickElement()
#get random article title
title <- remDr$findElement(using = "id", "firstHeading")$getElementText()[[1]]
#check if there is a linked page
link_exists <- try(remDr$findElement(using = "xpath", "/html/body/div[3]/div[3]/div[5]/div[1]/p[1]/a[1]"))
#if no linked page fill output with NA
if(is(link_exists,"try-error")){
first_link_title <- NA
first_link_text <- NA
#if there is a linked page
} else {
#click on link
link <- remDr$findElement(using = "xpath", "/html/body/div[3]/div[3]/div[5]/div[1]/p[1]/a[1]")$clickElement()
#get link page title
first_link_title <- try(remDr$findElement(using = "id", "firstHeading"))
if(is(first_link_title,"try-error")){
first_link_title <- NA
}else{
first_link_title <- first_link_title$getElementText()[[1]]
}
#get 1st section of link page
first_link_text <- try(remDr$findElement(using = "xpath", "/html/body/div[3]/div[3]/div[5]/div[1]/p[1]"))
if(is(first_link_text,"try-error")){
first_link_text <- NA
}else{
first_link_text <- first_link_text$getElementText()[[1]]
}
}
out <- data.frame("random_article" = title,
"first_link_title" = first_link_title,
"first_link_text" = first_link_text)
return(out)
}
```
Now that we have our scrape function and input we can parallelize the execution of the function.
For speed and efficiency reasons, it is advisable to specify the headless browser option in the `extraCapabilities` argument.
`parscrape` will show a progress bar, as well as elapsed and estimated remaining time so you can keep track of scraping progress.
```{r, results = 'hide', warning = FALSE, eval = FALSE}
wiki_text <- parsel::parscrape(scrape_fun = get_wiki_text,
scrape_input = input,
cores = 2,
packages = c("RSelenium","XML"),
browser = "firefox",
scrape_tries = 1,
extraCapabilities = list(
"moz:firefoxOptions" = list(args = list('--headless'))
))
```
`parscrape` returns a list with two elements:
1. a list of your scrape function output
2. a data.frame of inputs it was unable to scrape, and the associated error messages
### RSelenium Constructors
`parsel` allows you to generate safe scraping code with minimal hassle by simply composing `constructor` functions that effectively act as wrappers around `RSelenium` methods in a pipe. You can return a scraper function defined by `constructors` to the environment by starting your pipe with `start_scraper()` and ending it with `build_scraper()`. Alternatively you can dump the code generated by your `constructor` pipe to the console via `show()`.
We'll reproduce a slightly stripped down version of the `RSelenium` code in the above wikipedia scraping routine via the `parsel` `constructor` functions.
```{r, warning = FALSE, message = FALSE}
library(parsel)
# returning a scaper function
start_scraper(args = "x", name = "get_wiki_text") %>>%
go(url = "x") %>>%
click(using = "id", value = "'n-randompage'", name = "rand_art") %>>%
get_element(using = "id", value = "'firstHeading'", name = "title") %>>%
click(using = "xpath", value = "'/html/body/div[3]/div[3]/div[5]/div[1]/p[1]/a[1]'", name = "link") %>>%
get_element(using = "id", value = "'firstHeading'", name = "first_link_title") %>>%
get_element(using = "xpath", value = "'/html/body/div[3]/div[3]/div[5]/div[1]/p[1]'", name = "first_link_text") %>>%
build_scraper()
ls()
# dumping generated code to console
go(url = "x") %>>%
click(using = "id", value = "'n-randompage'", name = "rand_art") %>>%
get_element(using = "id", value = "'firstHeading'", name = "title") %>>%
click(using = "xpath", value = "'/html/body/div[3]/div[3]/div[5]/div[1]/p[1]/a[1]'", name = "link") %>>%
get_element(using = "id", value = "'firstHeading'", name = "first_link_title") %>>%
get_element(using = "xpath", value = "'/html/body/div[3]/div[3]/div[5]/div[1]/p[1]'", name = "first_link_text") %>>%
show()
```
Owner
- Name: Till Tietz
- Login: till-tietz
- Kind: user
- Location: Berlin
- Company: WZB-IPI, LSHTM, Humboldt Universität Berlin
- Repositories: 4
- Profile: https://github.com/till-tietz
statistics consulting @ LSHTM computational social science and methods research @ WZB-IPI & HU-Berlin
GitHub Events
Total
- Watch event: 1
- Push event: 1
Last Year
- Watch event: 1
- Push event: 1
Committers
Last synced: over 2 years ago
Top Committers
| Name | Commits | |
|---|---|---|
| till-tietz | t****4@g****m | 99 |
| Till Tietz | 6****z | 6 |
Issues and Pull Requests
Last synced: 6 months ago
All Time
- Total issues: 6
- Total pull requests: 33
- Average time to close issues: 3 months
- Average time to close pull requests: 16 minutes
- Total issue authors: 3
- Total pull request authors: 1
- Average comments per issue: 1.5
- Average comments per pull request: 0.0
- Merged pull requests: 33
- Bot issues: 0
- Bot pull requests: 0
Past Year
- Issues: 0
- Pull requests: 0
- Average time to close issues: N/A
- Average time to close pull requests: N/A
- Issue authors: 0
- Pull request authors: 0
- Average comments per issue: 0
- Average comments per pull request: 0
- Merged pull requests: 0
- Bot issues: 0
- Bot pull requests: 0
Top Authors
Issue Authors
- till-tietz (4)
- julienOlivier3 (1)
- KanKuno (1)
Pull Request Authors
- till-tietz (33)
Top Labels
Issue Labels
enhancement (2)
Pull Request Labels
Packages
- Total packages: 1
-
Total downloads:
- cran 300 last-month
- Total dependent packages: 0
- Total dependent repositories: 0
- Total versions: 4
- Total maintainers: 1
cran.r-project.org: parsel
Parallel Dynamic Web-Scraping Using 'RSelenium'
- Homepage: https://github.com/till-tietz/parsel
- Documentation: http://cran.r-project.org/web/packages/parsel/parsel.pdf
- License: MIT + file LICENSE
-
Latest release: 0.3.0
published almost 3 years ago
Rankings
Forks count: 14.9%
Stargazers count: 15.6%
Average: 27.3%
Dependent packages count: 29.8%
Dependent repos count: 35.5%
Downloads: 40.9%
Maintainers (1)
Last synced:
6 months ago
Dependencies
DESCRIPTION
cran
- RSelenium * imports
- lubridate >= 1.7.9 imports
- methods >= 3.3.1 imports
- parallel >= 3.6.2 imports
- purrr >= 0.3.4 imports
- rlang * imports
- utils >= 2.10.1 imports
- covr >= 3.5.1 suggests
- knitr * suggests
- rmarkdown * suggests
- testthat >= 3.0.0 suggests
.github/workflows/R-CMD-check.yaml
actions
- actions/checkout v2 composite
- actions/upload-artifact main composite
- r-lib/actions/check-r-package v1 composite
- r-lib/actions/setup-pandoc v1 composite
- r-lib/actions/setup-r v1 composite
- r-lib/actions/setup-r-dependencies v1 composite