climate
The R climate package: an interface for downloading in-situ meteorological (and hydrological) dataset
Science Score: 59.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
○CITATION.cff file
-
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
✓DOI references
Found 2 DOI reference(s) in README -
✓Academic publication links
Links to: mdpi.com -
✓Committers with academic emails
1 of 5 committers (20.0%) from academic institutions -
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (13.4%) to scientific vocabulary
Keywords
Keywords from Contributors
Repository
The R climate package: an interface for downloading in-situ meteorological (and hydrological) dataset
Basic Info
- Host: GitHub
- Owner: bczernecki
- License: other
- Language: R
- Default Branch: master
- Homepage: https://bczernecki.github.io/climate/
- Size: 16.4 MB
Statistics
- Stars: 95
- Watchers: 5
- Forks: 24
- Open Issues: 1
- Releases: 9
Topics
Metadata Files
README.md
climate 
The goal of the climate R package is to automatize downloading of in-situ meteorological and hydrological data from publicly available repositories:
- OGIMET (ogimet.com) - up-to-date collection of SYNOP dataset
- University of Wyoming - atmospheric vertical profiling data (http://weather.uwyo.edu/upperair/)
- National Oceanic & Atmospheric Administration - Earth System Research Laboratories - Global Monitoring Laboratory (NOAA)
- Polish Institute of Meteorology and Water Management - National Research Institute (IMGW-PIB)
- National Oceanic & Atmospheric Administration - National Climatic Data Center - Integrated Surface Hourly (ISH) (NOAA)
Installation
The stable release of the climate package from the CRAN repository can be installed with:
r
install.packages("climate")
It is highly recommended to install the most up-to-date development version of climate from GitHub with:
r
library(remotes)
install_github("bczernecki/climate")
Overview
Meteorological data
meteo_ogimet() - Downloading hourly and daily meteorological data from the SYNOP stations available in the ogimet.com collection. Any meteorological (aka SYNOP) station working under the World Meteorological Organizaton framework after year 2000 should be accessible.
meteo_imgw() - Downloading hourly, daily, and monthly meteorological data from the SYNOP/CLIMATE/PRECIP stations available in the danepubliczne.imgw.pl collection. It is a wrapper for
meteo_monthly(),meteo_daily(), andmeteo_hourly(). If 10-min dataset is needed then consider usingmeteo_imgw_datastore()meteonoaahourly() - Downloading hourly NOAA Integrated Surface Hourly (ISH) meteorological data - Some stations have > 100 years long history of observations
sounding_wyoming() - Downloading measurements of the vertical profile of atmosphere (aka rawinsonde data)
meteonoaaco2() - Downloading monthly CO2 measurements from Mauna Loa Observatory
Hydrological data
- hydro_imgw() - Downloading hourly, daily, and monthly hydrological data from the SYNOP / CLIMATE / PRECIP stations available in the
danepubliczne.imgw.pl collection.
It is a wrapper for previously developed set of functions such as:
hydro_monthly(), andhydro_daily()
Auxiliary functions and datasets
- stations_ogimet() - Downloading information about all stations available in the selected country in the Ogimet repository
- neareststationsogimet() - Downloading information about nearest stations to the selected point using Ogimet repository
- neareststationsnoaa() - Downloading information about nearest stations to the selected point available for the selected country in the NOAA ISH meteorological repository
- neareststationsimgw() - List of nearby meteorological or hydrological IMGW-PIB stations in Poland
- imgwmeteostations - Built-in metadata from the IMGW-PIB repository for meteorological stations, their geographical coordinates, and ID numbers
- imgwhydrostations - Built-in metadata from the IMGW-PIB repository for hydrological stations, their geographical coordinates, and ID numbers
- imgwmeteoabbrev - Dictionary explaining variables available for meteorological stations (from the IMGW-PIB repository)
- imgwhydroabbrev - Dictionary explaining variables available for hydrological stations (from the IMGW-PIB repository)
Example 1
Download hourly dataset from NOAA ISH meteorological repository:
``` r0 library(climate) noaa <- meteonoaahourly(station = "123300-99999", year = 2018:2019) # station ID: Poznan, Poland head(noaa)
year month day hour lon lat alt t2m dpt2m ws wd slp visibility
2019 1 1 0 16.85 52.417 84 3.3 2.3 5 220 1025.0 6000
2019 1 1 1 16.85 52.417 84 3.7 3.0 4 220 1024.2 1500
2019 1 1 2 16.85 52.417 84 4.2 3.6 4 220 1022.5 1300
2019 1 1 3 16.85 52.417 84 5.2 4.6 5 240 1021.2 1900
```
Example 2
Finding a nearest meteorological stations in a given country using NOAA ISH data source:
``` r1 library(climate)
find 100 nearest UK stations to longitude 1W and latitude 53N :
neareststationsogimet(country = "United+Kingdom", date = Sys.Date(), addmap = TRUE, point = c(-1, 53), noof_stations = 100 )
wmoid stationnames lon lat alt distance [km]
03354 Nottingham Weather Centre -1.250005 53.00000 117 28.04973
03379 Cranwell -0.500010 53.03333 67 56.22175
03377 Waddington -0.516677 53.16667 68 57.36093
03373 Scampton -0.550011 53.30001 57 60.67897
03462 Wittering -0.466676 52.61668 84 73.68934
03544 Church Lawford -1.333340 52.36667 107 80.29844
...
```

Example 3
Downloading daily (or hourly) data from a global (OGIMET) repository knowing its ID (see also nearest_stations_ogimet()):
``` r library(climate) o = meteo_ogimet(date = c(Sys.Date() - 5, Sys.Date() - 1), interval = "daily", coords = FALSE, station = 12330) head(o)
> station_ID Date TemperatureCAvg TemperatureCMax TemperatureCMin TdAvgC HrAvg WindkmhDir
> 3 12330 2019-12-21 8.8 13.2 4.9 5.3 79.3 SSE
> 4 12330 2019-12-20 5.4 8.5 -1.2 4.5 92.4 ESE
> 5 12330 2019-12-19 3.8 10.3 -3.0 1.9 89.6 SW
> 6 12330 2019-12-18 6.3 9.0 2.2 4.1 84.8 S
> 7 12330 2019-12-17 4.9 7.6 0.3 2.9 87.2 SSE
> WindkmhInt WindkmhGust PresslevHp Precmm TotClOct lowClOct SunD1h VisKm SnowDepcm PreselevHp
> 3 11.4 39.6 995.9 1.8 3.6 2.0 6.7 21.4 NA
> 4 15.0 NA 1015.0 0.0 6.4 0.6 1.0 8.0 NA
> 5 7.1 NA 1020.4 0.0 5.2 5.9 2.5 14.1 NA
> 6 9.2 NA 1009.2 0.0 5.7 2.7 1.4 12.2 NA
> 7 7.2 NA 1010.8 0.1 6.2 4.6 13.0 NA
```
Example 4
Downloading monthly/daily/hourly meteorological/hydrological data from the Polish (IMGW-PIB) repository:
``` r3 m = meteo_imgw(interval = "monthly", rank = "synop", year = 2000, coords = TRUE) head(m)
> rank id X Y station yy mm tmax_abs
> 575 SYNOPTYCZNA 353230295 23.16228 53.10726 BIAŁYSTOK 2000 1 5.3
> 577 SYNOPTYCZNA 353230295 23.16228 53.10726 BIAŁYSTOK 2000 2 10.6
> 578 SYNOPTYCZNA 353230295 23.16228 53.10726 BIAŁYSTOK 2000 3 14.8
> 579 SYNOPTYCZNA 353230295 23.16228 53.10726 BIAŁYSTOK 2000 4 27.8
> 580 SYNOPTYCZNA 353230295 23.16228 53.10726 BIAŁYSTOK 2000 5 29.3
> 581 SYNOPTYCZNA 353230295 23.16228 53.10726 BIAŁYSTOK 2000 6 32.6
> tmaxmean tminabs tminmean t2mmeanmon t5cmmin rr_monthly
> 575 0.4 -16.5 -4.5 -2.1 -23.5 34.2
> 577 4.1 -10.4 -1.4 1.3 -12.9 25.4
> 578 6.2 -6.4 -1.0 2.4 -9.4 45.5
> 579 17.9 -4.6 4.7 11.5 -8.1 31.6
> 580 21.3 -4.3 5.7 13.8 -8.3 9.4
> 581 23.1 1.0 9.6 16.6 -1.8 36.4
h = hydroimgw(interval = "daily", year = 2010:2011) head(h) id station rivor_lake date hyy idhyy dd H Q T mm thick 1 150210180 ANNOPOL Wisła (2) 2009-11-01 2010 1 1 287 436 NA 11 NA 2 150210180 ANNOPOL Wisła (2) 2009-11-02 2010 1 2 282 412 NA 11 NA 3 150210180 ANNOPOL Wisła (2) 2009-11-03 2010 1 3 272 368 NA 11 NA 4 150210180 ANNOPOL Wisła (2) 2009-11-04 2010 1 4 268 352 NA 11 NA 5 150210180 ANNOPOL Wisła (2) 2009-11-05 2010 1 5 264 336 NA 11 NA 6 150210180 ANNOPOL Wisła (2) 2009-11-06 2010 1 6 260 320 NA 11 NA ```
Example 5
Create Walter & Lieth climatic diagram based on downloaded data
``` r4 library(climate) library(dplyr)
df = meteoimgw(interval = "monthly", rank = "synop", year = 1991:2019, station = "POZNAŃ") df2 = select(df, station:t2mmeanmon, rrmonthly)
monthlysummary = df2 %>% groupby(mm) %>% summarise(tmax = mean(tmaxabs, na.rm = TRUE), tmin = mean(tminabs, na.rm = TRUE), tavg = mean(t2mmeanmon, na.rm = TRUE), prec = sum(rrmonthly) / ndistinct(yy))
monthlysummary = as.data.frame(t(monthlysummary[, c(5,2,3,4)])) monthlysummary = round(monthlysummary, 1) colnames(monthlysummary) = month.abb print(monthlysummary)
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
prec 37.1 31.3 38.5 31.3 53.9 60.8 94.8 59.6 40.5 39.7 35.7 38.6
tmax 8.7 11.2 17.2 23.8 28.3 31.6 32.3 31.8 26.9 21.3 14.3 9.8
tmin -15.0 -11.9 -7.6 -3.3 1.0 5.8 8.9 7.5 2.7 -2.4 -5.2 -10.4
tavg -1.0 0.5 3.7 9.4 14.4 17.4 19.4 19.0 14.3 9.1 4.5 0.8
create plot with use of the "climatol" package:
climatol::diagwl(monthly_summary, mlab = "en", est = "POZNAŃ", alt = NA, per = "1991-2019", p3line = FALSE) ```
Example 6
Download monthly CO2 dataset from Mauna Loa observatory
``` r5 library(climate) library(ggplot2) library(ggthemes)
co2 = meteonoaaco2() head(co2) co2$date = ISOdate(co2$yy, co2$mm, 1) ggplot(co2, aes(date, co2avg)) + geomline()+ geomsmooth()+ themebw()+ labs( title = "Carbon Dioxide (CO2)", subtitle = paste0("Mauna Loa Observatory "), caption = "data source: NOAA visualization: Bartosz Czernecki / R climate package", x = "", y = "ppm" )
```
Example 7
Use "climate" inside python environment via rpy2
```python
load required packages
from rpy2.robjects.packages import importr import rpy2.robjects as robjects import pandas as pd import datetime as dt
load climate package (make sure that it was installed in R before)
importr("climate")
test functionality e.g. with meteo_ogimet function for New York - La Guardia:
df = robjects.r"meteo_ogimet")
optionally - transform object to pandas data frame and rename columns + fix datetime:
res = pd.DataFrame(df).transpose() res.columns = df.colnames res["Date"] = pd.TimedeltaIndex(res["Date"], unit="d") + dt.datetime(1970,1,1) res.head
res[res.columns[0:7]].head()
station_ID Date TemperatureCAvg ... TemperatureCMin TdAvgC HrAvg
0 72503.0 2022-06-15 23.5 ... 19.4 10.9 45.2
1 72503.0 2022-06-14 25.0 ... 20.6 16.1 59.0
2 72503.0 2022-06-13 20.4 ... 17.8 16.0 74.8
3 72503.0 2022-06-12 21.3 ... 18.3 12.0 57.1
4 72503.0 2022-06-11 22.6 ... 17.8 8.1 40.1
```
Acknowledgment
Ogimet.com, University of Wyoming, and Institute of Meteorology and Water Management - National Research Institute (IMGW-PIB), National Oceanic & Atmospheric Administration (NOAA) - Earth System Research Laboratory, Global Monitoring Division and Integrated Surface Hourly (NOAA ISH) are the sources of the data.
Contribution
Contributions to this package are welcome. The preferred method of contribution is through a GitHub pull request. Feel also free to contact us by creating an issue.
Citation
To cite the climate package in publications, please use this paper:
Czernecki, B.; Głogowski, A.; Nowosad, J. Climate: An R Package to Access Free In-Situ Meteorological and Hydrological Datasets for Environmental Assessment. Sustainability 2020, 12, 394. https://doi.org/10.3390/su12010394"
LaTeX/BibTeX version can be obtained with:
library(climate)
citation("climate")
Owner
- Name: Bartosz Czernecki
- Login: bczernecki
- Kind: user
- Location: Poznan, Poland
- Company: iqdata
- Website: iqdata.pl
- Twitter: bartoszmeteo
- Repositories: 40
- Profile: https://github.com/bczernecki
R
GitHub Events
Total
- Issues event: 15
- Watch event: 23
- Delete event: 4
- Issue comment event: 22
- Push event: 54
- Pull request review comment event: 5
- Pull request review event: 7
- Pull request event: 5
- Fork event: 4
- Create event: 3
Last Year
- Issues event: 15
- Watch event: 23
- Delete event: 4
- Issue comment event: 22
- Push event: 54
- Pull request review comment event: 5
- Pull request review event: 7
- Pull request event: 5
- Fork event: 4
- Create event: 3
Committers
Last synced: 6 months ago
Top Committers
| Name | Commits | |
|---|---|---|
| bczernecki | b****i@g****m | 220 |
| Nowosad | t****i@g****m | 77 |
| unknown | a****i@u****l | 60 |
| Krzysztof Dyba | 3****b | 7 |
| exuk18c4 | b****i@b****m | 1 |
Committer Domains (Top 20 + Academic)
Issues and Pull Requests
Last synced: 6 months ago
All Time
- Total issues: 70
- Total pull requests: 43
- Average time to close issues: 2 months
- Average time to close pull requests: 22 days
- Total issue authors: 29
- Total pull request authors: 5
- Average comments per issue: 2.13
- Average comments per pull request: 2.26
- Merged pull requests: 39
- Bot issues: 0
- Bot pull requests: 0
Past Year
- Issues: 8
- Pull requests: 8
- Average time to close issues: about 1 month
- Average time to close pull requests: about 1 month
- Issue authors: 6
- Pull request authors: 1
- Average comments per issue: 0.88
- Average comments per pull request: 4.25
- Merged pull requests: 6
- Bot issues: 0
- Bot pull requests: 0
Top Authors
Issue Authors
- Nowosad (28)
- bczernecki (8)
- kadyb (4)
- fipoucat (3)
- magtro (2)
- aglogowski (2)
- gaferguz (1)
- Jam3791 (1)
- MengXin001 (1)
- Konstantinos82 (1)
- pdjakow (1)
- MarFor9 (1)
- kambe507a (1)
- adamperz (1)
- gabnagle (1)
Pull Request Authors
- bczernecki (34)
- Nowosad (6)
- kwadrat (1)
- MarcParm (1)
- kadyb (1)
Top Labels
Issue Labels
Pull Request Labels
Packages
- Total packages: 2
-
Total downloads:
- cran 683 last-month
- Total docker downloads: 41,971
-
Total dependent packages: 1
(may contain duplicates) -
Total dependent repositories: 2
(may contain duplicates) - Total versions: 29
- Total maintainers: 1
proxy.golang.org: github.com/bczernecki/climate
- Documentation: https://pkg.go.dev/github.com/bczernecki/climate#section-documentation
- License: other
-
Latest release: v1.2.3
published 10 months ago
Rankings
cran.r-project.org: climate
Interface to Download Meteorological (and Hydrological) Datasets
- Homepage: https://github.com/bczernecki/climate
- Documentation: http://cran.r-project.org/web/packages/climate/climate.pdf
- License: MIT + file LICENSE
-
Latest release: 1.2.3
published 10 months ago
Rankings
Maintainers (1)
Dependencies
- R >= 3.1 depends
- XML * imports
- curl * imports
- data.table * imports
- httr * imports
- dplyr * suggests
- knitr * suggests
- maps * suggests
- rmarkdown * suggests
- testthat * suggests
- tidyr * suggests
- actions/cache v2 composite
- actions/checkout v2 composite
- actions/upload-artifact main composite
- actions/upload-artifact v3 composite
- r-lib/actions/setup-pandoc v1 composite
- r-lib/actions/setup-r v1 composite
- actions/checkout v2 composite
- r-lib/actions/check-r-package v2 composite
- r-lib/actions/setup-r v2 composite
- r-lib/actions/setup-r-dependencies v2 composite
- JamesIves/github-pages-deploy-action 4.1.4 composite
- actions/checkout v1 composite
- r-hub/actions/checkout v1 composite
- r-hub/actions/platform-info v1 composite
- r-hub/actions/run-check v1 composite
- r-hub/actions/setup v1 composite
- r-hub/actions/setup-deps v1 composite
- r-hub/actions/setup-r v1 composite
- actions/checkout v4 composite
- actions/upload-artifact v4 composite
- codecov/codecov-action v4 composite
- r-lib/actions/setup-r v2 composite
- r-lib/actions/setup-r-dependencies v2 composite