pybarrnap
Python implementation of barrnap (Bacterial ribosomal RNA predictor)
Science Score: 44.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
✓CITATION.cff file
Found CITATION.cff file -
✓codemeta.json file
Found codemeta.json file -
✓.zenodo.json file
Found .zenodo.json file -
○DOI references
-
○Academic publication links
-
○Committers with academic emails
-
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (11.5%) to scientific vocabulary
Keywords
Repository
Python implementation of barrnap (Bacterial ribosomal RNA predictor)
Basic Info
Statistics
- Stars: 22
- Watchers: 2
- Forks: 0
- Open Issues: 0
- Releases: 8
Topics
Metadata Files
README.md
pybarrnap: Python implementation of barrnap
Table of contents
Overview
pybarrnap is a python implementation of barrnap (Bacterial ribosomal RNA predictor). pybarrnap provides a CLI compatible with barrnap and also provides a python API for running rRNA prediction and retrieving predicted rRNA. pybarrnap default mode depends only on the python library and not on the external command-line tools nhmmer and bedtools. As an additional feature from barrnap, accurate mode is available by installing the external command-line tool cmscan(infernal).
[!NOTE] Barrnap v0.9 uses the HMM profile database created from older releases of Rfam and SILVA. On the other hand, pybarrnap default mode uses the HMM profile database created from the Rfam(14.10). Therefore, there will be some differences in results between Barrnap v0.9 and pybarrnap default mode.
Installation
Python 3.9 or later is required for installation.
pybarrnap depends on pyhmmer and biopython python library.
If accurate mode is required, please install infernal additionally.
Install PyPI package:
pip install pybarrnap
Install bioconda package:
conda install -c conda-forge -c bioconda pybarrnap
Use Docker (Image Registry):
docker run -it --rm ghcr.io/moshi4/pybarrnap:latest pybarrnap -h
CLI Usage
Basic Command
pybarrnap genome.fna > genome_rrna.gff
Options
$ pybarrnap --help
usage: pybarrnap [options] genome.fna[.gz] > genome_rrna.gff
Python implementation of barrnap (Bacterial ribosomal RNA predictor)
positional arguments:
fasta Input fasta file (or stdin)
optional arguments:
-e , --evalue E-value cutoff (default: 1e-06)
-l , --lencutoff Proportional length threshold to label as partial (default: 0.8)
-r , --reject Proportional length threshold to reject prediction (default: 0.25)
-t , --threads Number of threads (default: 1)
-k , --kingdom Target kingdom [bac|arc|euk|all] (default: 'bac')
kingdom='all' is available only when set with `--accurate` option
-o , --outseq Output rRNA hit seqs as fasta file (default: None)
-i, --incseq Include FASTA input sequences in GFF output (default: OFF)
-a, --accurate Use cmscan instead of pyhmmer.nhmmer (default: OFF)
-q, --quiet No print log on screen (default: OFF)
-v, --version Print version information
-h, --help Show this help message and exit
[!TIP] If
--accurateoption is set, cmscan(infernal) is used for rRNA search instead of pyhmmer.nhmmer. Although cmscan is slower than pyhmmer.nhmmer, it is expected to give more accurate results because it performs rRNA searches using RNA secondary structure profiles.
CLI Example
Click here to download examples dataset.
CLI Example 1
Print rRNA prediction result on screen
pybarrnap examples/bacteria.fna
CLI Example 2
Output rRNA predition result to file
pybarrnap examples/archaea.fna -k arc --outseq rrna.fna --incseq > rrna_incseq.gff
CLI Example 3
With pipe stdin
cat examples/fungus.fna | pybarrnap -q -k euk | grep 28S
API Usage
pybarrnap provides simple API for running rRNA prediction and retrieving predicted rRNA.
```python from pybarrnap import Barrnap from pybarrnap.utils import loadexamplefasta_file
Get example fasta file path
fastafile = loadexamplefastafile("bacteria.fna")
Run pybarrnap rRNA prediction
barrnap = Barrnap( fasta_file, evalue=1e-6, lencutoff=0.8, reject=0.25, threads=1, kingdom="bac", accurate=False, quiet=False, ) result = barrnap.run()
Output rRNA GFF file
result.writegff("bacteriarrna.gff")
Output rRNA GFF file (Include input fasta sequence)
result.writegff("bacteriarrna_incseq.gff", incseq=True)
Output rRNA fasta file
result.writefasta("bacteriarrna.fna")
Get rRNA GFF text and print
print("\n========== Print rRNA GFF ==========") print(result.getgfftext())
Get rRNA features and print
print("\n========== Print rRNA features ==========") for rec in result.seq_records: for feature in rec.features: print(feature.id, feature.type, feature.location, feature.qualifiers)
Get rRNA sequences and print
print("\n========== Print rRNA sequences ==========") for rec in result.getrrnaseq_records(): print(f">{rec.id}\n{rec.seq}") ```
LICENSE
pybarrnap was reimplemented in python based on the perl implementation of Barrnap v0.9. HMM(Hidden Marcov Model) and CM(Covariance Model) profile database for pybarrnap was created from Rfam(14.10).
Owner
- Name: moshi
- Login: moshi4
- Kind: user
- Repositories: 13
- Profile: https://github.com/moshi4
Web Developer / Bioinformatics / GIS
Citation (CITATION.cff)
cff-version: 1.2.0
message: If you use this software, please cite it as below.
authors:
- family-names: Shimoyama
given-names: Yuki
title: "pybarrnap: Python implementation of barrnap"
date-released: 2024-01-24
url: https://github.com/moshi4/pybarrnap
GitHub Events
Total
- Release event: 1
- Watch event: 9
- Delete event: 1
- Push event: 2
- Pull request event: 2
- Create event: 2
Last Year
- Release event: 1
- Watch event: 9
- Delete event: 1
- Push event: 2
- Pull request event: 2
- Create event: 2
Committers
Last synced: almost 2 years ago
Top Committers
| Name | Commits | |
|---|---|---|
| moshi | s****1@g****m | 2 |
| moshi | 4****4 | 1 |
Issues and Pull Requests
Last synced: 4 months ago
All Time
- Total issues: 1
- Total pull requests: 10
- Average time to close issues: 4 days
- Average time to close pull requests: 23 minutes
- Total issue authors: 1
- Total pull request authors: 2
- Average comments per issue: 4.0
- Average comments per pull request: 0.3
- Merged pull requests: 10
- Bot issues: 0
- Bot pull requests: 0
Past Year
- Issues: 0
- Pull requests: 2
- Average time to close issues: N/A
- Average time to close pull requests: less than a minute
- Issue authors: 0
- Pull request authors: 1
- Average comments per issue: 0
- Average comments per pull request: 0.0
- Merged pull requests: 2
- Bot issues: 0
- Bot pull requests: 0
Top Authors
Issue Authors
- althonos (1)
Pull Request Authors
- moshi4 (14)
- althonos (2)
Top Labels
Issue Labels
Pull Request Labels
Packages
- Total packages: 1
-
Total downloads:
- pypi 29 last-month
- Total dependent packages: 0
- Total dependent repositories: 0
- Total versions: 8
- Total maintainers: 1
pypi.org: pybarrnap
Python implementation of barrnap (Bacterial ribosomal RNA predictor)
- Documentation: https://pybarrnap.readthedocs.io/
- License: GPL-3.0-only
-
Latest release: 0.5.1
published 12 months ago
Rankings
Maintainers (1)
Dependencies
- actions/checkout v3 composite
- actions/setup-python v4 composite
- actions/checkout v3 composite
- actions/setup-python v4 composite
- ipykernel >=6.13.0 develop
- pytest >=7.1.2 develop
- pytest-cov >=4.0.0 develop
- ruff >=0.1.6 develop
- biopython >=1.79
- pyhmmer >=0.10.4
- python ^3.8
- actions/checkout v4 composite
- docker/build-push-action v5 composite
- docker/login-action v3 composite
- python 3.11-slim build