@stdlib/math-base-special-gamma-lanczos-sum-expg-scaled
Calculate a scaled Lanczos sum for the approximation of the gamma function.
@stdlib/math-base-special-trunc
Round a double-precision floating-point number toward zero.
@stdlib/math-base-special-kernel-betainc
Incomplete beta function and its first derivative.
@stdlib/math-base-special-gamma-delta-ratio
Compute the ratio of two gamma functions.
@stdlib/math-base-special-gamma-lanczos-sum
Calculate the Lanczos sum for the approximation of the gamma function.
@stdlib/math-base-special-truncf
Round a single-precision floating-point number toward zero.
@stdlib/math-iter-special-riemann-zeta
Create an iterator which evaluates the Riemann zeta function for each iterated value.
@stdlib/math-iter-special-gamma1pm1
Create an iterator which computes `gamma(x+1) - 1` for each iterated value.
@stdlib/math-iter-special-gamma
Create an iterator which evaluates the gamma function for each iterated value.
@stdlib/math-iter-special-betaln
Create an iterator which evaluates the natural logarithm of the beta function.
@stdlib/math-iter-special-digamma
Create an iterator which evaluates the digamma function for each iterated value.
@stdlib/math-iter-special-gammaln
Create an iterator which evaluates the natural logarithm of the gamma function for each iterated value.
@stdlib/math-iter-special-beta
Create an iterator which evaluates the beta function.
@stdlib/math-base-special-signumf
Evaluate the signum function for a single-precision floating-point number.
math-base-special-signum
Evaluate the signum function for a double-precision floating-point number.
math-base-special-gammasgnf
Computes the sign of the gamma function for a single-precision floating-point number.
@stdlib/math-iter-special-trigamma
Create an iterator which evaluates the trigamma function for each iterated value.
math-base-special-gamma-lanczos-sum-expg-scaledf
This repository provides an efficient implementation of the scaled gamma function using the Lanczos sum. It aims to enhance numerical accuracy in computations, making it a valuable tool for developers working with mathematical applications. 🛠️📊