Science Score: 26.0%
This score indicates how likely this project is to be science-related based on various indicators:
-
○CITATION.cff file
-
✓codemeta.json file
Found codemeta.json file -
○.zenodo.json file
-
✓DOI references
Found 1 DOI reference(s) in README -
○Academic publication links
-
○Committers with academic emails
-
○Institutional organization owner
-
○JOSS paper metadata
-
○Scientific vocabulary similarity
Low similarity (14.0%) to scientific vocabulary
Keywords
bioconductor
bioinformatics
data-visualization
dimension-reduction
exploratory-data-analysis
machine-learning
omics-data-integration
pipeline
pre-processing
r
r-package
rstats
statistical-analysis
user-friendly
workflow
Keywords from Contributors
ontology
Last synced: 6 months ago
·
JSON representation
Repository
:package: Omics Data Analysis Tools
Basic Info
Statistics
- Stars: 12
- Watchers: 3
- Forks: 5
- Open Issues: 0
- Releases: 2
Topics
bioconductor
bioinformatics
data-visualization
dimension-reduction
exploratory-data-analysis
machine-learning
omics-data-integration
pipeline
pre-processing
r
r-package
rstats
statistical-analysis
user-friendly
workflow
Created over 6 years ago
· Last pushed about 1 year ago
Metadata Files
Readme
Changelog
License
Code of conduct
README.Rmd
--- output: github_document --- # POMA[](https://www.tidyverse.org/lifecycle/#stable) [](https://www.codefactor.io/repository/github/pcastellanoescuder/POMA) [](https://github.com/pcastellanoescuder/POMA/commits/master) [](https://www.gnu.org/licenses/gpl-3.0) | _BioC_ branch | Status | Version | Rank | |- |- |- |- | | [Release](http://bioconductor.org/packages/release/bioc/html/POMA.html) | [](https://bioconductor.org/checkResults/release/bioc-LATEST/POMA/) | [](https://www.bioconductor.org/packages/POMA) | [](https://bioconductor.org/packages/stats/bioc/POMA) | | [Devel](http://bioconductor.org/packages/devel/bioc/html/POMA.html) | [](https://bioconductor.org/checkResults/devel/bioc-LATEST/POMA/) | [](https://bioconductor.org/packages/devel/bioc/html/POMA.html) | [](https://bioconductor.org/packages/stats/bioc/POMA) | The `POMA` package offers a comprehensive toolkit designed for omics data analysis, streamlining the process from initial visualization to final statistical analysis. Its primary goal is to simplify and unify the various steps involved in omics data processing, making it more accessible and manageable within a single, intuitive R package. Emphasizing on reproducibility and user-friendliness, `POMA` leverages the standardized `SummarizedExperiment` class from Bioconductor, ensuring seamless integration and compatibility with a wide array of Bioconductor tools. This approach guarantees maximum flexibility and replicability, making `POMA` an essential asset for researchers handling omics datasets. ## Installation To install the Bioconductor last release version: ```{r, eval = FALSE} # install.packages("BiocManager") BiocManager::install("POMA") ``` To install the GitHub version: ```{r, eval = FALSE} # install.packages("devtools") devtools::install_github("pcastellanoescuder/POMA") ``` To install the GitHub devel version: ```{r, eval = FALSE} devtools::install_github("pcastellanoescuder/POMA", ref = "devel") ``` ## Citation Castellano-Escuder et al. POMAShiny: A user-friendly web-based workflow for metabolomics and proteomics data analysis. _PLoS Comput Biol._ 2021 Jul 1;17(7):e1009148. doi: 10.1371/journal.pcbi.1009148. PMID: 34197462; PMCID: PMC8279420. ```{bibtex} @article{castellano2021pomashiny, title={POMAShiny: A user-friendly web-based workflow for metabolomics and proteomics data analysis}, author={Castellano-Escuder, Pol and Gonz{\'a}lez-Dom{\'\i}nguez, Ra{\'u}l and Carmona-Pontaque, Francesc and Andr{\'e}s-Lacueva, Cristina and S{\'a}nchez-Pla, Alex}, journal={PLOS Computational Biology}, volume={17}, number={7}, pages={e1009148}, year={2021}, publisher={Public Library of Science San Francisco, CA USA} } ``` ## News Click [here](https://github.com/pcastellanoescuder/POMA/blob/master/NEWS.md) for the latest package updates.
Owner
- Name: Pol Castellano Escuder
- Login: pcastellanoescuder
- Kind: user
- Location: Durham, NC, US
- Company: Duke Molecular Physiology Institute
- Website: https://pcastellanoescuder.github.io
- Twitter: polcastellano_
- Repositories: 34
- Profile: https://github.com/pcastellanoescuder
Bioinformatician at Duke University. Computational Biology & Data Science | Multi-omics, Machine Learning, AI & Software Development
GitHub Events
Total
- Push event: 5
Last Year
- Push event: 5
Committers
Last synced: over 2 years ago
Top Committers
| Name | Commits | |
|---|---|---|
| Pol Castellano Escuder | p****s@g****m | 171 |
| pcastellanoescuder | p****l@M****l | 92 |
| Nitesh Turaga | n****a@g****m | 8 |
Issues and Pull Requests
Last synced: 6 months ago
All Time
- Total issues: 8
- Total pull requests: 6
- Average time to close issues: 8 days
- Average time to close pull requests: 14 days
- Total issue authors: 7
- Total pull request authors: 1
- Average comments per issue: 2.13
- Average comments per pull request: 0.0
- Merged pull requests: 6
- Bot issues: 0
- Bot pull requests: 0
Past Year
- Issues: 0
- Pull requests: 0
- Average time to close issues: N/A
- Average time to close pull requests: N/A
- Issue authors: 0
- Pull request authors: 0
- Average comments per issue: 0
- Average comments per pull request: 0
- Merged pull requests: 0
- Bot issues: 0
- Bot pull requests: 0
Top Authors
Issue Authors
- adamsorbie (2)
- pbaCamille (1)
- rfilipesoares (1)
- pcastellanoescuder (1)
- Arm3de (1)
- linlennypinawa (1)
- MPietzke (1)
Pull Request Authors
- pcastellanoescuder (6)
Top Labels
Issue Labels
Pull Request Labels
Packages
- Total packages: 1
-
Total downloads:
- bioconductor 11,560 total
- Total dependent packages: 1
- Total dependent repositories: 0
- Total versions: 5
- Total maintainers: 1
bioconductor.org: POMA
Tools for Omics Data Analysis
- Homepage: https://github.com/pcastellanoescuder/POMA
- Documentation: https://bioconductor.org/packages/release/bioc/vignettes/POMA/inst/doc/POMA.pdf
- License: GPL-3
-
Latest release: 1.18.0
published 10 months ago
Rankings
Dependent repos count: 0.0%
Dependent packages count: 0.0%
Average: 25.7%
Downloads: 77.2%
Maintainers (1)
Last synced:
6 months ago
[](https://www.tidyverse.org/lifecycle/#stable)
[](https://www.codefactor.io/repository/github/pcastellanoescuder/POMA)
[](https://github.com/pcastellanoescuder/POMA/commits/master)
[](https://www.gnu.org/licenses/gpl-3.0)
| _BioC_ branch | Status | Version | Rank |
|- |- |- |- |
| [Release](http://bioconductor.org/packages/release/bioc/html/POMA.html) | [](https://bioconductor.org/checkResults/release/bioc-LATEST/POMA/) | [](https://www.bioconductor.org/packages/POMA) | [](https://bioconductor.org/packages/stats/bioc/POMA) |
| [Devel](http://bioconductor.org/packages/devel/bioc/html/POMA.html) | [](https://bioconductor.org/checkResults/devel/bioc-LATEST/POMA/) | [](https://bioconductor.org/packages/devel/bioc/html/POMA.html) | [](https://bioconductor.org/packages/stats/bioc/POMA) |
The `POMA` package offers a comprehensive toolkit designed for omics data analysis, streamlining the process from initial visualization to final statistical analysis. Its primary goal is to simplify and unify the various steps involved in omics data processing, making it more accessible and manageable within a single, intuitive R package. Emphasizing on reproducibility and user-friendliness, `POMA` leverages the standardized `SummarizedExperiment` class from Bioconductor, ensuring seamless integration and compatibility with a wide array of Bioconductor tools. This approach guarantees maximum flexibility and replicability, making `POMA` an essential asset for researchers handling omics datasets.
## Installation
To install the Bioconductor last release version:
```{r, eval = FALSE}
# install.packages("BiocManager")
BiocManager::install("POMA")
```
To install the GitHub version:
```{r, eval = FALSE}
# install.packages("devtools")
devtools::install_github("pcastellanoescuder/POMA")
```
To install the GitHub devel version:
```{r, eval = FALSE}
devtools::install_github("pcastellanoescuder/POMA", ref = "devel")
```
## Citation
Castellano-Escuder et al. POMAShiny: A user-friendly web-based workflow for metabolomics and proteomics data analysis. _PLoS Comput Biol._ 2021 Jul 1;17(7):e1009148. doi: 10.1371/journal.pcbi.1009148. PMID: 34197462; PMCID: PMC8279420.
```{bibtex}
@article{castellano2021pomashiny,
title={POMAShiny: A user-friendly web-based workflow for metabolomics and proteomics data analysis},
author={Castellano-Escuder, Pol and Gonz{\'a}lez-Dom{\'\i}nguez, Ra{\'u}l and Carmona-Pontaque, Francesc and Andr{\'e}s-Lacueva, Cristina and S{\'a}nchez-Pla, Alex},
journal={PLOS Computational Biology},
volume={17},
number={7},
pages={e1009148},
year={2021},
publisher={Public Library of Science San Francisco, CA USA}
}
```
## News
Click [here](https://github.com/pcastellanoescuder/POMA/blob/master/NEWS.md) for the latest package updates.